MEMS激光扫描投影技术
你能想象现在的科学技术已经可以把之前几十公斤重的激光雷达塞进一块比指甲盖还小的芯片中而且还能完成同样的工作吗?利用新世纪的集成电路和 3D 加工技术,一块小小的芯片能够承载比我们以往任何时代都多的功能,而这一技术的潜在应用领域也让芯片业巨头挤破了头去收购相关技术。 2012 年,微机电系统(MEMS)行业巨头 STMicroelectronics 收购以色列生产手机投影设备的公司 bTendo,获得这家公司的静电驱动一维 MEMS 激光扫描投影技术。2015 年,Intel 并购瑞士生产微型投影设备的公司 Lemoptix,现在已经将这家公司的 MEMS 激光扫描芯片应用于自己的 Remote EyeSight 增强现实眼镜上。2016 年,汽车半导体巨头英飞凌收购荷兰一家以一维 MEMS 激光扫描技术研制激光雷达的创业公司 Innoluce。 什么是 MEMS?微机电系统(M......阅读全文
激光扫描共聚焦显微镜现有技术存在的问题
现有技术存在的问题 3.1 快速扫描与高分辨率之间的矛盾 LSCM 通过单个像素扫描获取图像,点扫描特性所依赖的机械构造注定该技术是部相对缓慢的扫描仪器,对于一幅典型的 1024*1024 像素的图像,用一个常用的 2 微秒每个像素点停留时间,仅形成一幅图像的时间就长达超过 2秒。其检测
MEMS技术在海洋观测中的应用(二)
二、MEMS现状基于各种原因,许多MEMS产品在商业上取得了巨大成功,其中许多器件已经获得广泛应用。汽车工业是MEMS技术的主要驱动力之一。例如MEMS振动结构陀螺仪,是一款新的相当便宜的设备,目前用于汽车防滑或电子稳定控制系统中。村田电子的SCX系列MEMS加速度计、陀螺仪和倾斜仪,以及将这些功能
MEMS振荡器技术及其应用研究
随着电子系统小型化、集成化的速度不断加快,对小型化、可集成的高性能振荡器的研究成为热点。而MEMS谐振器以其高Q值、可集成、抗冲击性好等优点,为研制出小型化、可集成的高性能振荡器提供了可能。由于MEMS谐振器的动态阻抗和Q值对MEMS振荡器的设计与性能有着重要的影响,本文以得到低动态阻抗和高Q值ME
MEMS技术在海洋观测中的应用(三)
三、MEMS的应用领域MEMS器件和系统具有体积小、重量轻、功耗低、成本低、可靠性高、性能优异、功能强大、可以批量生产等传统机械无法比拟的优点, 在很多领域得到广泛的应用。⒈ 信息业信息技术的发展,对设备提出了更高的要求,功能更加强大的同时体积缩小。从多媒体人机界面(HI)看,使用微麦克风的
MEMS技术在海洋观测中的应用(四)
⒊ 基于MEMS的惯性传感器惯性(加速度)传感器是一种技术比较成熟,应用比较广泛的MEMS传感器,主要应用于波浪观测。目前国内外波浪测量浮标通常采用传统的加速度传感器,这些传感器体积大、重量重、价格昂贵,从而使浮标的制作成本增加。近年来,随着基于MEMS的惯性传感器的技术逐渐成熟,MEMS惯
MEMS技术在海洋观测中的应用(一)
微机电系统(MEMS),在欧洲也被称为微系统技术,或在日本被称为微机械,是一类器件,其特点是尺寸很小,制造方式特殊。MEMS是指采用微机械加工技术批量制作的、集微型传感器、微型机构、微型执行器以及信号处理和控制电路、接口、通讯等于一体的微型器件或微型系统。MEMS器件的特征长度从1毫米到1微米--1
激光扫描共聚焦显微镜的扫描模块
扫描模块主要由针孔光栏(控制光学切片的厚度)、分光镜(按波长改变光线传播方向)、发射荧光分色器(选择一定波长范围的光进行检测)、检测器(光电倍增管)组成。荧光样品中的混合荧光进入扫描器,经过检测针孔光栏、分光镜和分色器选择后,被分成各单色荧光,分别在不同的荧光通道进行检测并形成相应的共焦图象,同
激光扫描20秒诊断疟疾
它是对抗疟疾的武器—— 一次激光扫描便能在数秒内给出准确的诊断,并且无须划破皮肤,就像电影《星际迷航》中虚幻的三录仪。 它通过将能量以脉冲的形式注入一个人的手腕或耳垂中的血管而发挥作用。激光的波长不会伤害人体器官,但会被恶性疟原虫以血液为食所产生的废弃晶体——疟原虫色素吸收。 当晶体吸收这种
激光共聚焦扫描显微境
LCSM照片,蓝色为细胞核,绿色为微管 激光共聚焦扫描显微镜(laser confocal scanning microscope)用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬时成像的物点。由于激光束的波长较短,
激光扫描装置的工作原理
激光扫描装置是激光打印机中最重要的成像设备,在此以黑白激光打印机为例,介绍激光打印机的成像过程,如图38-2所示。图38-2 激光扫描装置的工作原理电脑将图像传送给激光扫描装置,图像分为有颜色的黑色部分和无颜色的白色部分,黑色部分照射激光,白色部分不照射激光。激光扫描装置将光照射到旋转棱镜上,棱镜通
聚焦激光扫描显微镜
聚焦激光扫描显微镜(confocallaser scanning microscopy,CLSM)是生物医学实验室中重要的仪器设备,可以检测细胞甚至分子水平的改变,1995年美国学者在传统共聚焦激光扫描显微镜基础上加上在体扫描装置,实现了皮肤上的在体共聚焦成像,这是一种在皮肤原位、无创、细胞水平的成
激光共聚焦扫描显微境
激光共聚焦扫描显微镜(laser confocal scanning microscope)用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬时成像的物点。由于激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,
立体投影技术有望助力癌症精确手术
日本研究人员最新开发出一种装置,利用投影映射技术向肝癌患者的肝脏直接投影,区分肿瘤部位和正常部位,协助手术准确安全的进行。这种装置被命名为“可见光投影装置”。开发这一装置的京都大学研究人员说,这一技术不仅能够缩短手术时间,还能够减轻患者负担。除肝癌外,今后还有望用于乳腺癌、肺癌、直肠癌等各种癌症
卧式投影仪的技术维修介绍
卧式投影仪具有稳定可靠的机械结构和高精度的放大倍率。可将被测工件的轮廓、截面和表面形状准确的成像到投影屏上,适用于刀具、齿轮、螺纹、弹簧等轮廓形状的观察与测量。 维修: 1、移动X、Y轴座标,数据处理器显示箱数据不变化先检查光栅尺是否接触良好(一般情况X、Y轴二条光栅尺不会同时
投影测量仪的技术特点介绍
投影测量仪又称为光学投影检量仪或光学投影比较仪,为利用光学投射的原理,将被测工件之轮廓或表机投影至观察幕上; 作测量或比对的一种测量仪器,可以高效地检测各种形状复杂工件的轮廓和表面形状,主要由投影箱、主壳体和工作台三大部分构成。 投影测量仪特点 1、花岗石平板底座,工作
射频MEMS移相器
1、引言微波移相器是相控阵雷达、卫星通信、移动通信设备中的核心组件,它的工作频带、插入损耗直接影响着这些设备的抗干扰能力和灵敏度,以及系统的重量、体积和成本,因此研究宽带、低插损的移相器在军事上和民用卫星通信领域具有重要的意义。近年来,随着RF MEMS开关的研究不断取得进展,使MEMS开关替代
投影术
中文名称投影术英文名称shadow casting定 义电子显微镜中一种重要的增强背景和待观察样品反差的方法。即将样品置于云母的表面,然后干燥;在真空装置中将样品镀上一层重金属(金或铂金),然后镀上一层碳原子,以增加铸型的强度和稳定性;再将铸型置于酸池中,破坏样品,只留下金属铸型;漂洗后置于载网上
费歇尔投影式的投影规则
为了作出统一的分子构型表达式,费歇尔曾制定了三条投影规则: (1)将碳链放在垂直线上或竖起来,把氧化态较高的碳原子或命名时编号最小(主链中第一号)的碳原子C1放在最上端。 (2)投影时假定手性碳原子放在纸平面上,与垂直线(vertical line)相连的原子或基团(垂直方向的键 /竖键)表
传感器激光雷达(一)
激光雷达,也称光学雷达(LIght Detection And Ranging)是激光探测与测距系统的简称,它通过测定传感器发射器与目标物体之间的传播距离,分析目标物体表面的反射能量大小、反射波谱的幅度、频率和相位等信息,从而呈现出目标物精确的三维结构信息。自上世纪60年代激光被发明不久,激光雷达就
测量投影仪的技术参数简介
投影屏 投影屏尺寸(mm):φ250 投影屏旋转范围:0°~ 360° 旋转角度显示当量:1′ 旋转角度准确度:8′ 放大倍率10× 20× 50× 100x 物方线视场φ25mm φ12.5mm φ5mm 物方工作距离75mm 69mm 27mm 放大倍率误差:≤0.08%
家用投影机DLP技术相关发展介绍
从应用市场方面来看,其应用正逐渐朝向大型投影机及电影放映机(Digital Cinema)等高端机种以及2kg以下超小型化机型方面,向着两极化方向发展,从未来投影机的发展趋势来看,高性能产品和轻型化产品的市场需求渴望持续扩大,这两个领域恰恰是DLP投影技术的优势领域。适合于随身便携的投影机和数字
扫描激光器的功能介绍
中文名称扫描激光器英文名称scanning laser定 义激光辐射相对于一固定参照系随时间改变方向、传播的起点或图样的激光器。应用学科机械工程(一级学科),光学仪器(二级学科),激光器件和激光设备-激光器名称(三级学科)
激光扫描仪的工作原理
LAZER 200激光扫描仪独特的升降桥结构使整个系统更为紧凑,可在200x200x100 mm (8x8x4")的测量范围内任意位置扫描检测。同轴的视频成像系统用来定位工件特征、设置基准、选择激光扫描的起始点和结束点。白色LED照明增加表面 光源强度,同时轮廓光帮助定位工件边缘。激光扫描与影像
激光扫描荧光显微镜
探测装置比较典型。方法是将杂交后的芯片经处理后固定在计算机控制的二维传动平台上,并将一物镜置于其上方,由氩离子激光器产生激发光经滤波后通过物镜聚焦到芯片表面,激发荧光标记物产生荧光,光斑半径约为5-10μm。同时通过同一物镜收集荧光信号经另一滤波片滤波后,由冷却的光电倍增管探测,经模数转换板转换为数
激光扫描共聚焦显微镜
激光扫描共聚焦显微镜(Laser scanning ConfocalMicroscopy,简称LSCM),在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光,利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,捕捉到微弱的信号或追踪高效的进程以及在亚细胞水平上观察诸如
激光扫描仪的工作原理
LAZER 200激光扫描仪独特的升降桥结构使整个系统更为紧凑,可在200x200x100 mm (8x8x4")的测量范围内任意位置扫描检测。同轴的视频成像系统用来定位工件特征、设置基准、选择激光扫描的起始点和结束点。白色LED照明增加表面 光源强度,同时轮廓光帮助定位工件边缘。激光扫描与影像
激光扫描仪的工作原理
LAZER 200激光扫描仪独特的升降桥结构使整个系统更为紧凑,可在200x200x100 mm (8x8x4")的测量范围内任意位置扫描检测。同轴的视频成像系统用来定位工件特征、设置基准、选择激光扫描的起始点和结束点。白色LED照明增加表面 光源强度,同时轮廓光帮助定位工件边缘。激光扫描与影像
激光扫描细胞仪的功能简介
激光扫描细胞仪是一种用于生物学、基础医学领域的分析仪器,于2016年12月19日启用。 主要功能 激光扫描细胞仪(Laser Scanning Cytometer, LSC),以多组参数分析细胞及形态,是当今世界上最先进的细胞生物学分析仪器。 主要功能:定量细胞内物质及组织扫描,多时段同点分
扫描激光器的功能介绍
中文名称扫描激光器英文名称scanning laser定 义激光辐射相对于一固定参照系随时间改变方向、传播的起点或图样的激光器。应用学科机械工程(一级学科),光学仪器(二级学科),激光器件和激光设备-激光器名称(三级学科)
激光共聚焦扫描显微镜
对比激光共聚焦扫描显微镜与传统光学显微镜在高放大倍率下的成像效果。结果显示,激光共聚焦扫描显微镜在高放大倍率下,其成像景深大的优点对于获取高质量的图像有很大的帮助。同时通过激光共聚焦扫描显微镜的激光光源实现单色光成像,可以清晰观察到溅镀了消影层的ITO玻璃。