基于深度学习的化纤外观缺陷语义分割
摘要: 针对化纤外观缺陷检测使用基于深度学习的语义分割方法,总结了自2014年以来基于深度学习的典型语义分割方法,并在此基础上应用到化纤外观检测项目上,取得了不错的效果。 01 化纤外观缺陷检测背景 化纤作为纺织制造的原料,由化纤生产企业进入下游纺织企业前会收卷形成丝饼,但在丝饼生产中会有不同程度的损伤,如产生油污、毛丝、绊丝、断丝等表面缺陷,这些缺陷会直接造成下游纺织企业生产的产品质量不高。油污会影响织物的外观以及上色;毛丝会使织造效率降低,同时使织物表面产生瑕疵;绊丝不仅会影响化纤的包装外观,而且在化纤后续加工容易产生断头和毛丝;而断丝则直接导致化纤的不连续。因此需要对化纤丝饼进行影响织物质量的表面缺陷检测,以确保化纤出厂质量。目前大部分生产厂家通过人工来检测化纤外观缺陷,既费时费力又不能保证质量,使用机器视觉代替人工检测对化纤生产企业是迫切需要的。 化纤外观缺陷主要包括油污、碰毛、纸管破损、绊丝、毛......阅读全文
基于深度学习的化纤外观缺陷语义分割
摘要: 针对化纤外观缺陷检测使用基于深度学习的语义分割方法,总结了自2014年以来基于深度学习的典型语义分割方法,并在此基础上应用到化纤外观检测项目上,取得了不错的效果。 01 化纤外观缺陷检测背景 化纤作为纺织制造的原料,由化纤生产企业进入下游纺织企业前会收卷形成丝饼,但在丝饼
基于深度学习和超像素的大田小区水稻稻穗分割技术研究
不同生长阶段顶视相机角度下进行稻穗分割近日华中农业大学和华中科技大学联合作物表型研究团队在《Plant Methods》杂志上发表题为:Panicle-SEG: A robust image segmentation method for rice panicles in the field b
基于CNN的语义分割应用于沟槽轮廓图像以研究作物根系...
基于CNN的语义分割应用于沟槽轮廓图像以研究作物根系分布情况由于土壤中的养分和水分分布不均,影响作物生长和产量的根系体系是土壤根系分布的重要组成部分。耕地中的养分分布取决于耕地面积,耕作方法和施肥系统。为此,根系分布受耕作和施肥影响。 现代农业通常使用高输入设备,使位于地表附近的耕层土壤变得十分肥沃
基于深度学习的时间序列预测研究获进展
时间序列预测是大规模数据无损压缩和极端天气预报等领域的核心技术。随着应用场景多样化和数据复杂性提升,现有模型在异构数据的统一表达、长序列结构依赖建模、极端天气波动捕捉等方面存在挑战。中国科学院计算机网络信息中心人工智能团队围绕上述挑战开展研究,提出一系列创新算法与模型,并在实际系统部署应用。
Nature:利用深度学习可预测细胞外观,帮助发现病变过程
据Nature最新报道,艾伦细胞科学研究所(Allen Institute for Cell Science)发布的网站Allen Cell Explore,包含数千个干细胞的三维立体图像,不止是发现每个细胞的独特外观,通过深度学习算法,该研究所还对细胞的外观进行了预测。改变一个基因对细胞整体而
研究人员基于深度学习无创获得血液输入函数
全面量化大脑PET图像,常常需要精确的血流输入函数。然而传统方法中,获取这一函数通常依赖于侵入性且耗时的动脉导管采血,这在临床实践中往往难以实现。7月2日,中国科学院深圳先进技术研究院副研究员孙涛团队与河南省人民医院副院长王梅云团队合作,在医学影像顶级期刊《IEEE医学影像汇刊》发表最新研究。研究团
基于深度学习的全基因组选择新方法诞生
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物》(Mole
母乳抗菌肽筛选新突破:基于深度学习技术的高效发现
近日,我所能源研究技术平台(DNL20)靳艳研究员团队与大连工业大学刘俐副教授团队、国家乳业技术创新中心何剑正高级工程师团队合作,发展了一种基于深度学习技术的乳源抗菌肽筛选新方法。团队利用该方法从母乳中筛选获得了新结构抗菌肽,并揭示了母乳初乳和成熟乳中抗菌肽的分布规律。世界卫生组织(WHO)和中国营
基于深度强化学习的机器人控制的合作研究获进展
近日,中国科学院沈阳自动化研究所与英国爱丁堡机器人中心合作研究取得新进展,提出了一种在动态、非结构环境下基于深度强化学习的移动机械臂自主作业方法,将最新的人工智能学习理论成功应用于真实的复杂移动机械臂控制。相关研究成果发表于期刊Sensors。 机器人在空间、陆地和水下等大量动态、非结构环境下
科学家在智能驾驶场景感知研究方面取得进展
近日,中国科学院上海微系统与信息技术研究所仿生视觉系统实验室研究员李嘉茂团队与合作者在智能驾驶感知领域取得进展。针对智能驾驶感知的两个关键问题——栅格占据预测和全景分割进行研究,两项成果分别被机器人领域国际学术会议2024 IEEE International Conference on Robot
首个基于深度学习的脑静脉系统相关脑出血诊断研究获突破
近日,浙江大学医学院附属第二医院童璐莎、高峰教授团队,联合浙江大学生物仪器与工程学院赵立教授团队,成功开发出一种用于区别急性自发性脑出血的可解释性的人工智能模型,该模型针对急性脑叶出血发病凶险,病因鉴别困难等问题,仅利用常规头颅CT(非增强),从急诊脑出血患者中精准识别出脑静脉系统血栓形成相关脑出血
美开发出基于热映像的图像分割算法
美国普渡大学的研究人员开发出一种基于热映像的计算机图像分割算法,可使计算机迅速识别出物体的外形,即便其发生扭曲或轻度变形也不会受到影响。该技术将使机器视觉与人类视觉更加接近,可广泛应用于图像搜索、医疗影像以及无人机制造等多个领域。详细研究结果将分为两篇论文,在6月21日至23日举行的IEEE(美
化学所发展基于深度学习的蛋白质单分子分析新方法
蛋白质是生命活动的物质基础和主要承担者,许多重要的蛋白质以复合物或多聚体形式参与信号转导、离子转运、免疫响应等众多生理过程,蛋白质的化学计量组成与其生物功能的调控及多种疾病的发生发展密切相关。因此,在生理条件下定量表征蛋白质的化学计量比(亚基组成数或蛋白聚集状态),对于研究蛋白质的相互作用、阐明
我国科学家首次公开了SAR图像船舶检测数据集
近日,中国科学院空天信息研究院数字地球重点实验室研究员王超团队首次公开了SAR图像船舶检测数据集。该数据集来自于多源、多模式SAR图像。基于此数据集,该团队实现了复杂背景下的商船检测与分类一体化深度学习处理系统,在无需海陆分割的基础上,实现商用船舶的近实时自动检测与分类,为我国国产高分3号的业务
TPU将成深度学习的未来?(一)
在Google I/O 2016的主题演讲进入尾声时,谷歌的CEO皮采提到了一项他们这段时间在AI和机器学习上取得的成果,一款叫做Tensor Processing Unit(张量处理单元)的处理器,简称TPU。在这个月看来,第一代的TPU处理器已经过时。在昨天凌晨举行的谷歌I/O 2017
TPU将成深度学习的未来?(二)
能够进行数据推理的第二代TPU第一代的TPU只能用于深度学习的第一阶段,而新版则能让神经网络对数据做出推论。谷歌大脑研究团队主管Jeff Dean表示:“我预计我们将更多的使用这些TPU来进行人工智能培训,让我们的实验周期变得更加快速。”“在设计第一代TPU产品的时候,我们已经建立了一个相对
深度学习算法“解密”脑活动
英国《自然·医学》杂志9月25日在线发表的一项研究,报告了一种可以分析四肢瘫痪患者大脑活动的深度学习算法。该算法已被用于向患者的前臂肌肉传递电刺激,从而恢复瘫痪肢体的功能性运动。 慢性瘫痪患者的生活质量可以通过脑机接口加以改善。脑机接口可以将控制运动的中枢神经系统回路和辅助设备(例如计算机光标
AI侦探敲碎深度学习黑箱
研究人员创建了能填补照片空白的神经网络,以鉴别人工智能瑕疵。 Jason Yosinski坐在美国加州旧金山的一个小型玻璃办公室内,陷入了对人工智能的沉思。作为优步公司的研究科学家,Yosinski正为在笔记本电脑上运行的人工智能(AI)进行“脑外科手术”。 很多AI将改变人类现代生活,例如
一种基于半监督学习的深度状态空间模型在植物生长建...
一种基于半监督学习的深度状态空间模型在植物生长建模中的应用研究培育优质高产的作物一直是科学家们追求的目标,人们通过一系列先进的栽培技术来实现此目标。比如对于番茄的培育,由于干旱胁迫有利于番茄的糖分积累,所以人们可以运用精准灌溉技术来控制水分的供给量从而优化番茄果实品质,然而这项技术并没有在农田实践中
声学所提出一种基于深度学习的水下目标定位新方法
近年来,浅海声源定位,尤其是水下低频宽带声源的定位问题,受到了国内外研究者的广泛关注。匹配场等传统方法需要环境的先验知识对声场进行建模,而环境参数瞬息万变,往往不能准确获得,环境参数的这种不确定性会造成传统方法的定位性能不佳。 为了减少对环境先验知识的依赖,近日,中国科学院声学研究所语言声学与
科研人员开发出基于深度学习的小麦旗叶夹角测量新方法
旗叶夹角是决定小麦群体大小、群体光能拦截效率以及通风透光性能的关键农艺性状,是小麦株型的重要构成因素之一。旗叶夹角因长期依赖人工测量,导致效率低、精度差、主观性强,难以满足大规模精准育种和栽培管理的需求。因此,低成本、高精度测量小麦旗叶夹角成为当前亟需解决的技术瓶颈。近日,中国科学院遗传与发育生物学
灵素系统——一种基于基因指纹和深度学习的药效预测系统
2021年6月17日,北京大学国际癌症研究院谢正伟团队在Nature Biotechnology(IF=36.6)在线发表了题目为“Prediction of drug efficacy fromtranscriptional profiles with deep learning”的科研论文(
BMC-Biology:基于深度学习预测E3泛素连接酶识别位点
真核细胞内蛋白质的降解依赖于自噬及泛素-蛋白酶体系统(2004年诺贝尔化学奖)。其中,泛素-蛋白酶体系统负责降解细胞内超过80%的蛋白,该系统的关键酶为E3泛素连接酶,负责识别要被降解的底物蛋白并将其泛素化。人体内表达600余种E3,这些E3以特定规则结合不同底物蛋白,从而实现降解过程的特异性。底物
基于包装材料薄膜外观质量的检测
民以食为天,食品安全关系到每个人的健康。近年来,屡见不鲜的食品安全问题引起了民众的极大关注,政府相关部门也出台了法律法规对食品质量进行监管、控制,这些均对食品生产企业提出了极大的挑战。企业主不得不重新审视食品质量控制的重要性,进而寻求食品安全问题解决方案。除了原料、添加剂和加工工艺等因素,食品包装对
深度学习算法准确追踪动物运动
根据英国《自然·神经科学》杂志8月21日在线发表的一项研究,美国哈佛大学团队运用一种新型深度学习算法,成功追踪动物运动及行为,其准确度可达到人工水平,而且无需采用追踪标记物或进行费时的手动分析。专家认为,这一成果打开了海量的数据来源之门。 准确追踪行为发生期间的身体运动部位是运动科学的一项重要
深度学习协助预测厄尔尼诺-|《自然》论文
《自然》发表的一篇论文Deep learning for multi-year ENSO forecasts报道了一种可以提前一年半预测厄尔尼诺事件的深度学习方法,克服了该领域内长期存在的一项挑战。用来预测厄尔尼诺现象的CNN预测系统来源: Ham et al. 厄尔尼诺事件发生于太平洋东部和
识别田间条件下小麦的穗区域的表型分析方法
2019年6月,Plant Phenomics刊发了由来自英国诺里奇研究所(Norwich Research Park)的Tahani Alkhudaydi等人撰写的题为An exploration of deep-learning based phenotypic analysis to dete
苏州医工所团队实现早期肺癌淋巴结转移精准无创诊断
肺癌是世界范围内致死率最高的癌症,目前临床早期肺癌患者的首选治疗方案是肺叶切除联合系统性淋巴结清扫,但对于没有淋巴结转移的早期肺癌患者,淋巴结清扫将增加癌症复发和术后并发症的风险,甚至将导致淋巴水肿、神经损伤、气胸等并发症。因此,术前准确预测淋巴结转移情况将有效避免不必要的淋巴结清扫手术,降低复
深度学习在雷达中的研究综述(一)
深度学习在雷达中的研究综述王俊, 郑彤, 雷鹏, 魏少明 摘要:雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过
深度学习在雷达中的研究综述(三)
3.2 基于SAE的SAR图像处理研究SAE的特点是可自动从无标记数据中学习特征,并且给出比原始数据更好的特征描述,进一步通过该学习到的特征得到更好的分类效果。有学者将其应用于地物目标分类、舰船分类以及城市变化检测等场景。并且通过SAE对SAR图像进行分析,其与传统方法相比,展现SAE具有自动学习高