THz在凝聚态物理研究中的应用

THz波填补了红外光和微波的频率空白。使在全频范围内研究凝聚态物质与电磁波(光)的相互作用成为可能,特别是对固体元激发的研究具有重要意义。THz频率范围内的固体元激发有:离子晶体的横光学声子和纵光学声子,离子晶体的横光学声子与光子相互作用产生的极化激元,金属的等离子体振荡,金属和半导体的回旋共振等。我们对光学晶体MgF2单晶在THz频范围的波谱进行了实验研究.在0.5—2.5THz范围测出MgF2单晶的THz波吸收谱和折射率谱。完好的MgF2单晶(样品l#)吸收系数(0.2—22.5/cm)是随频率增加而呈直线增大,表明有光学声子被激发;有位错缺陷的MgF2单晶(样品2#)吸收系数较小,表明光学声子较少。Co掺杂的MgF2单晶(样品3#)吸收系数变化较大,而且在1.90 THz出现峰值(吸收系数达到70/cm)。样品1#的折射率随频率增加在1.2THz出现底谷,折射率为2.16;而样品2#的折射率比1#样品和3#样品都大(在......阅读全文

verTera-THz-extension太赫兹英文参数

verTera THz extensionDifferent verTera versions:The verTera extension is offered in three different versions that access different spectral regime

THz在凝聚态物理研究中的应用

THz波填补了红外光和微波的频率空白。使在全频范围内研究凝聚态物质与电磁波(光)的相互作用成为可能,特别是对固体元激发的研究具有重要意义。THz频率范围内的固体元激发有:离子晶体的横光学声子和纵光学声子,离子晶体的横光学声子与光子相互作用产生的极化激元,金属的等离子体振荡,金属和半导体的回旋共振等。

太赫兹(THz)的主要市场概况和主要品牌

太赫兹(THz)波段是介于红外和毫米波之间的一个波段,是电磁波谱范围内最后一个未被开发的波段。与传统技术相比,THz技术具有极丰富的光谱信息、极短的脉冲宽度、极宽的光谱范围、极低的光子能量和极特别的穿透性等特点,近年来受到科学界和工业界的高度重视,并逐步应用在科学研究、生物医疗和国防安全等领域。太赫

宽带时域太赫兹光谱仪(0.314THz)

宽波段(0.3-14 THz)时域太赫兹光谱仪系统灵活,便捷,紧凑型太赫兹光谱仪(反射兼透射式一体化)!瑞士Rainbow Photonics 公司推出TeraSys-AiO 时域太赫兹光谱仪产品,为实验室太赫兹光谱和成像研究提供了灵活的解决方案。 TeraSys-AiO时域太赫兹光谱仪在无

基于光学及光子学的太赫兹(THz)辐射源

太赫兹波(Tera-Hertz Wave,频率在0.1—10THz范围)是光子学技术与电子学技术、宏观与微观的过渡区域,是一个具有科学研究价值但尚未开发的电磁辐射区域。如何有效的产生高功率(高能量)、高效率且能在室温下稳定运转、宽带可调的THz辐射源,已经成为科研工作者追求的目标。根据THz辐射

拓扑铁电材料的超快动力学研究获进展

  近年来,强场太赫兹技术为揭示新奇物理现象、调控材料物性和开发超快功能器件开辟了新路径。精准捕捉这些瞬态过程,亟需兼具强场驱动与高信噪比探测性能的定制化实验平台。  近日,中国科学院物理研究所/北京凝聚态物理国家研究中心联合清华大学、南京大学,在拓扑铁电材料的超快动力学研究方面取得进展。  研究通

透射式太赫兹时域光谱仪模块(114-THz)

透射式太赫兹时域光谱仪模块(1-14 THz)透射式(1-14 THz)太赫兹光谱仪模块、可灵活配置飞秒激光源!瑞士Rainbow Photonics 公司推出TeraKit 太赫兹光谱模块化产品,为实验室太赫兹时域光谱及成像等科研应用提供了灵活的解决方案。 TeraKit太赫兹时域光谱仪基

宽谱太赫兹成像光谱仪(高至20THz)

宽频谱太赫兹成像光谱模块(最高可达20 THz)宽频谱太赫兹成像仪(高达20 THz),可灵活配置飞秒激光源!瑞士Rainbow Photonics 公司推出TeraIMAGE宽频谱太赫兹成像光谱模块产品,为实验室太赫兹时域光谱及成像等科研应用提供了灵活的解决方案。 TeraIMAGE太赫兹

反射式太赫兹时域光谱仪(18-THz-)

反射式太赫兹时域光谱仪模块(1-8 THz)反射式太赫兹光谱仪模块,可灵活配置飞秒激光源!瑞士Rainbow Photonics 公司推出反射式太赫兹时域光谱仪模块TeraKit-R,其为太赫兹光谱研究提供了灵活的解决方案。TeraKit-R基于有机晶体产生太赫兹(高达20 THz),突破传

超快太赫兹扫描隧道显微镜(THzSTM)

导读   原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。   正文   近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国

物理所等利用强磁场产生新型圆偏振强太赫兹光源

  太赫兹波是指频率处于0.1 THz(1012Hz)到10 THz之间的电磁波。这个波段处于电子学和光子学传统波段的“空隙”区,因而缺乏有效的产生和探测方法。但是,太赫兹波有着非常广泛的用途,例如:许多生物大分子的骨架振动、晶体中晶格的低频振动等均处于太赫兹波段,因此太赫兹成像等方法在对

太赫兹波与太赫兹技术

太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为 0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间,故对其研究手段由电子学理论逐渐过渡为光子学理论。20世纪90年代以前,人们对太赫兹波的认识非常有限。近年来,随着激光技术、量子阱技术和半导体技术的发展,为太赫兹脉冲

透射式太赫兹时域光谱仪模块(114-THz)参数

指标参数TeraKitTHz generator/detectorOrganic crystalSpectral range 1-14 THz (with ~50fs pump laser)Best phase matchable wavelength1300-1600 nmRequirements

宽波段(0.314-THz)时域太赫兹光谱仪系统参数

指标参数TeraSys-AiOTHz generator/detectorDSTMSSpectral range 0.3-14 THz (in transimission)0.3-8 THz (in reflection)Best phase matchable wavelength1300-160

宽谱太赫兹成像光谱仪(高至20THz)参数

 指标参数TeraIMAGETHz generator/detectorOrganic crystalSpectral range 1-14 THz (with ~50fs pump laser)Best phase matchable wavelength1300-1600 nmScaning r

宽谱太赫兹成像光谱仪(高至20THz)特点

主要特点:基于有机晶体产生,探测太赫兹频谱高达14THz(可定制)成像扫描范围:50x50 m m2可选项:扫描范围 100x100 m m2,包含泵浦激光源主要应用:危险品,生物医学样品的成像塑料,特殊聚合物及半导体检测

太赫兹

太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。历史早期

刘盛纲院士:执着的“太赫兹”先驱

2016年9月27日,丹麦哥本哈根第41届国际红外毫米波-太赫兹会议(IRMMW-THz)上传来阵阵掌声,国际红外毫米波太赫兹学会将该领域的最高奖——特别贡献奖授予了中科院院士、电子科技大学前校长刘盛纲,以表彰其在本领域的杰出成就。该奖要求获奖者必须获过K.J.Button奖、主持过该会议并是

高分辨率太赫兹时域光谱仪(0.34THz)

高分辨率太赫兹时域光谱仪系统(0.3-4 THz)紧凑型太赫兹时域光谱仪(响应频段可定制)!瑞士Rainbow Photonics 公司的Terasys4000 太赫兹时域光谱仪,为实验室太赫兹时域光谱研究提供了灵活的解决方案。 Terasys4000太赫兹时域光谱仪基于有机晶体产生太赫兹,

反射式太赫兹时域光谱仪模块(18-THz)参数

指标参数TeraKit-RTHz generatorOrganic crystalSpectral range 1-8 THz Best phase matchable wavelength 1300-1600 nmDepends on the femtosecond laser source   

太赫兹(THz)光谱在生物大分子研究中的应用(二)

4 THz 光谱在水环境中生物分子研究的应用    水对于生物分子发挥其功能有着至关重要的作用,但长期以来,由于实验仪器和研究方法的局限,水分子与生物大分子的相互作用难以观察. 90年代后期,随着THz-TDS技术开始应用于生物学研究领域,研究人员发现THz对生物分子中的水非常敏感,THz光

太赫兹(THz)光谱在生物大分子研究中的应用(一)

 汪一帆1) 尉万聪2) 周凤娟1)** 薛照辉1)**(1)天津大学农业与生物工程学院,天津,300072; 2)清华大学生物科学与技术系,北京,100084)     摘要 太赫兹(THz)辐射是一种新型的远红外相干辐射源,近年来在生物大分子研究中得到了广泛的应用,特别是在生物分子的结构

物理所等利用强激光大幅提升太赫兹脉冲能量

  太赫兹(THz)辐射位于中红外和微波辐射之间,由于其单光子能量低和谱“指纹性”等独特优势,在材料科学、生物医疗和国防安全等领域具有重要应用价值。然而大能量太赫兹辐射源的缺乏是限制太赫兹科学和应用发展的关键瓶颈问题之一。有多种电子学和光学的方法可以获得太赫兹辐射,但到目前为止,公开报道的太赫兹脉冲

物理所等澄清双色场太赫兹辐射方案推广及物理机制

  太赫兹波通常指频率处于0.1THz到10THz的电磁波。由于波段独特,太赫兹波在多各领域具有应用潜力,但如何产生可调谐的强太赫兹辐射源是一个长期存在的难题。近三十年的研究表明,等离子体可以把强激光转化成强太赫兹辐射源。其中,2000年提出的“双色场方案”,由于转换效率高和技术简单等优点,得到最为

太赫兹特点

太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对

太赫兹通信

短亦有短的好,开辟战术通信新领域。在无线通信发展百余年后的今天,军事通信领域500MHz~5GHz频段资源已日趋稀缺,未来量子通信技术虽值得憧憬,但目前仍有些遥不可及。而太赫兹这一曾被“遗忘”的波段,集成了微波通信与光通信的优点,具有传输速率高、容量大、方向性强、安全性高及穿透性好等诸多特性,在军事

太赫兹成像

远距离穿墙术,铸就反恐作战新利器。如果问一下驻伊美军最怕的是什么,那答案肯定是路边炸弹,防不胜防的路边炸弹,成了驻伊美军不寒而栗的“头号杀手”,以至于让美国海军陆战队司令迈克尔·哈吉认为:“这种相对低级的武器将成为未来战争的一个标志。”在美军撤离伊拉克之前路边炸弹造成的伤亡一度不绝于耳。与此同时,不

太赫兹芯片

太赫兹芯片是一种全新的微芯片,是一种信号放大器,运行速度达到了1太赫兹,创下了最新的吉尼斯世界纪录。2018年4月23日,由中国电科13所研制的首款国产太赫兹成像芯片在首届数字中国建设峰会上正式发布。研发历史2014年11月,诺思罗普-格鲁曼公司芯片创造了新的吉尼斯世界纪录研发出了太赫兹芯片,能够达

太赫兹简介

THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896

太赫兹特点

特点编辑人们关注THz技术的原因是THz射线普遍存在,是人们认识自然界的有效线索和工具。但是相对于其他波段的电磁波比如红外和微波,对它的认识和应用非常匮乏。其次,THz射线有它自身的特点。THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辨的研究,而且通过取样测量技术,能够有效地抑制远红