三种光谱分析技术(一)

AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,因此小编今天就带大家辨一辨这“光谱三兄弟”。“光谱三兄弟”简介AAS(原子吸收光谱):基于气态的基态原子外层电子对紫外光和可见光的吸收为基础的分析方法。当元素的特征辐射通过该元素的气态基态原子区时,部分光被蒸气中基态原子共振吸收而减弱,通过单色器和检测器测得特征谱线被减弱的程度,即吸光度,根据吸光度与被测元素的浓度成线性关系,从而进行元素的定量分析。AES(原子发射光谱):是利用物质在热激发或电激发下,每种元素的原子发射特征光谱来判断物质的组成并进行元素的定性与定量分析。在正常状态下,原子处于基态,原子在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征谱线。AFS(原子荧光光谱):介于原子发射(A......阅读全文

光谱分析的科学原理

根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成

原子吸收光谱分析

概述: 原子吸收光谱法是根据蒸气相中待测元素的基态原子对其共振辐射的吸收进行定量分析的方法。1、原子吸收光谱法的优点(1)、检出限低、灵敏度高(2)、精密度高、分析速度快(3)、选择性好,光谱干扰少:原子吸收谱线少,一般没有共存元素的光谱重叠。(4)、应用范围广:可测定元素达70多种,不仅可以测定金

光谱分析石英光纤配件

       上海闻奕光电科技有限公司能够设计、生产包括抗紫外辐照石英光纤、深紫外石英光纤、石英光纤、近红外石英光纤、以及中红外光纤等多种材料,多种配置的光纤。拥有丰富的光纤产品及配件。       光纤是光传输的媒介。使用光纤能够自由地对光进行引导。上海闻奕光电科技有限公司提供的石英光纤专

光谱分析的定量原理

用光谱不仅能定性分析物质的化学成分,而且能确定元素含量的多少。光谱分定量原理一般是依据光的强度与待测分析物质含量有确定的函数关系。由于某种特定光谱光是由某特定物质产生的,一般该物质含量越大,相应的光谱光的强度也越大,在目前大多数光谱仪器中,通常是控制仪器在一定的条件下,通过建立特辱定光谱光的强度与待

拉曼光谱分析简介

  拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

光谱分析仪原理

光谱分析仪原理是将成分复杂的复合光分解为光谱线并进行测量和计算的科学仪器,被广泛应用于辐射度学分析、颜色测量、化学成份分析等领域,在冶金、地质、水文、医药、石油化工、环境保护、宇宙探索等行业发挥着重要作用。光谱分析仪特点在照明行业,通常使用光谱仪来测量光源的光色参数,光谱仪一般由分光系统、接收系统和

光谱分析的技术特点

由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.

玫瑰精油的光谱分析

玫瑰精油因其售价昂贵、制备费时,且需要消耗大量原料,因此制备过程中常常被掺入各种廉价的物质以次充好。本文将报道如何采用一种新的光谱分析方法来检测被污染的玫瑰精油。 从大马士革玫瑰和百叶蔷薇的叶子中提炼得到的玫瑰精油产品属于当今最为昂贵的香精原料。玫瑰精油以及玫瑰提取物的分析鉴定通常采用GC

光谱分析的研究方向

根据研究光谱方法的不同,习惯上把光谱学区分为发射光谱学、吸收光谱学与散射光谱学。这些不同种类的光谱学,从不同方面提供物质微观结构知识及不同的化学分析方法。发射光谱可以区分为三种不同类别的光谱:线状光谱、带状光谱和连续光谱。线状光谱主要产生于原子,带状光谱主要产生于分子,连续光谱则主要产生于白炽的固体

什么是光谱分析技术?

利用各种化学物质所具有的发射、吸收或散射光谱谱系的特征,来确定其性质、结构或含量的技术,称为光谱分析技术。特点:灵敏、快速、简便。是生物化学分析中最常用的分析技术。分类:

RNA-光谱分析与定量

            试剂、试剂盒 DEPC 无核酸酶的水 仪器、耗材 紫外分光光度计 石英比色杯

光谱分析法分类

  光谱分析仪的构造包括:入射狭缝,色散系统,成像系统以及出射狭缝组成。  光谱分析仪包括集中类型,如可见光波段使用的光谱分析仪外,红外光谱分析仪,另外还有紫外光谱分析仪,他们的用途是较为广泛的,在空气污染、水污染、食物卫生、金属产业等行业中,是常用的检测仪器。主要通过光谱分析仪对光对样品进行分析,

光谱分析仪器

光谱分析仪器是进行光谱分析的仪器设备,主要由光源、分光系(光谱仪)及观测系统三部分组成。光源光源的作用:首先,把试样中的组分蒸发离解为气态原子,然后使这些气态原子激发,使之产生特征光谱。因此光源的主要作用是提供试样蒸发、原子化和激发所需的能量。常用光源类型:目前常用的光源有直流电弧、交流电弧、电火花

同步荧光光谱分析

同步荧光分析根据激发单色器和发射单色器在扫描过程中彼此间保持的关系,同步扫描荧光技术可分为固定波长差, 固定能量差,和可变角同步扫描三类。固定波长差方法将激发和发射单色器波长维持一定的差值,得到同步荧光光谱。这时如果  相当于或者大于斯托克额斯位移,能够获得尖而窄的荧光峰。荧光物质分子浓度与

光谱分析的定性原理

通过光谱的研究,人们可以得到原子、分子等的能级结构、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的信息。与此同时,光谱学方法应用在获取物质组成方面的信息,为化学分析提供了多种重要的定性与定量的分析方法。光谱分析一般可依据物质与光的相互作用产生的光谱的特征来定,不同光谱特征有很

光谱分析方法及其分类

一、光谱法与非光谱法凡是基于检测能量作用于待测物质后产生的辐射信号或所引起的变化的分析方法均可称为光学光谱分析法,常简称光分析法。根据测量的信号是否与能级的跃迁有关,光学分析法可分为光谱法和非光谱法两大类。非光谱法测量的信号不包含能级的跃迁,它是通过测量电磁辐射某些基本性质,如折射、散射、干涉、衍射

太阳光谱分析系统

  这款太阳光谱分析系统是一款高精度的紫外-可见光便携式太阳光谱辐射测试仪和太阳光谱分析仪,专业为太阳光谱测试分析而设计,测量精度高,便携式设计,测量速度快,不到6.5秒就能完成全部光谱分析测试。  这款太阳光谱分析系统采用USB接口,高灵敏度,超低杂散光,窄带宽,超大动态范围,高波长精度。  这套

发射光谱分析概述

  1822年,赫休尔对各种火焰尖端研究之后,他认为这些不同颜色的火焰可能源于有色物质的分子,当他们被变为蒸气状态时就处于激烈运动之中,但其结论却一概而论,认为所有的火焰在某一温度下都可变成黄色,并未揭示出焰色与物质原子特性的关系。1825年,英国的塔波尔通过自己制造的仪器观测经待研究物质浸泡过的灯

光谱分析仪测量原理

当金属被能量激发时,原子的壳层电子会被激发到较高能级的外层轨道上。在一定条件下,它从高能级跃迁到低能级就会发出光子,发出特征谱线。各种元素都有不同的特征谱线。这些谱线经过光学系统进行分光、色散成按波长排序的一系列连续光谱、再经过光电转换元件把光信号直接转换为电信号。最后计算机系统就可以通过计算某元素

简述光谱分析方法的原理

  物质吸收波长范围在200~760nm区间的电磁辐射能而产生的分子吸收光谱称为该物质的紫外——可见吸收光谱,利用紫外——可见吸收光谱进行物质的定性、定量分析的方法称为紫外——可见分光光度法。其光谱是由于分子之中价电子的跃进而产生的,因此这种吸收光谱决定于分子中价电子的分布和结合情况。其在饲料加工分

光谱分析法的介绍

光谱分析法是利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法。英文为spectral analysis或spectrum analysis。各种结构的物质都具有自己的特征光谱,光谱分析法就是利用特征光谱研究物质结构或测定化学成分的方法。

X射线荧光光谱分析

XRF的原理:X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位:nm)描述。X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足够能量的X射线照

光谱分析仪工作原理

  光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由

一段光谱分析史实

   现在回忆录及“传”很多,但普遍有个缺点——当事人不在了。例如“钱学森传”有两个版本,作者不同可以理解,但都是在钱学森去世后才出版,此时的真实性就不是没有一点问题——作者可能由于某种原因有明显的倾向性。真实性有问题,“传”的价值就大大折扣。    今天我介绍一段“史实”,当事人都在,包括核工业

光谱分析是什么意思

发射光谱分析是根据被测原子或分子在激发状态下发射的特征光谱的强度计算其含量。吸收光谱是根据待测元素的特征光谱,通过样品蒸汽中待测元素的基态原子吸收被测元素的光谱后被减弱的强度计算其含量。它符合郎珀-比尔定律:A= -lg I/I o= -lgT = KCL式中I为透射光强度,I0为发射光强度,T为透

X-射线荧光光谱分析

本文评述了我国在2005年至2006年X射线荧光光谱,包括粒子激发的X射线光谱的发展和应用,内容包括仪器研制、激发源、探测器、软件、仪器改造、仪器维护和维修、样品制备技术、分析方法研究和应用。 更多还原

光谱分析的基本形式

①线状光谱。由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较

X荧光光谱分析特点

由于X射线荧光的能量比较大,样品被激发后,产生的特征X射线极易被吸收,而从样品中发射出来的荧光很少,也即是荧光产额很少。因此采用X荧光光谱仪测量微量元素,不是特长,因此不要把精力过分地放在低含量元素分析上。同理,对于轻元素,如硼、碳、氮、氧等,也不要指望有多好的检出限;但对于高含量的轻元素分析,却有

X射线荧光光谱分析

X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。X射线荧光谱仪具有快速

红外光谱分析的用途

红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于