氮化镓/碳化硅技术真的能主导我们的生活方式?(四)

想要电动机启动,可不是合上闸这么简单。想要实现远程控制和多点控制,需要做的还有很多。本文列举几个最基本的电动机控制回路,除了在生产中的机械控制需要用到外,在设计PLC电路时,这些也是必备单元。 本文将由易到难逐一讲解。 电动机控制回路常用元件 按钮▼ 按钮分为启动按钮、停止按钮和机械互锁按钮。前两者共4个接线柱,后者有6个接线柱。 启动按钮多为绿色,平时内部为断开状态,按下按钮后内部闭合,松开后恢复断开; 停止按钮多为红色,平时内部为闭合状态,按下按钮后内部断开,松开后恢复闭合; 机械互锁按钮可以看作是一个双投开关,共6个接线柱,平时左侧接线柱接通,按下后右侧接线柱接通,松开后恢复左侧接线柱接通,可任意作为启动按钮或停止按钮。 按钮一般用SB表示,如果有多个按钮同时存在,会在SB后面加数字,如SB1,SB2。 接触器/继电器▼ 上图是接触器,继电器与之相比较小,但原理相同。共有两排共12个......阅读全文

傅里叶红外光谱仪在第三代Sic半导体应用

   据消息人士透露,我国计划把大力支持发展第三代半导体产业,写入正在制定中的“十四五”规划,计划在2021-2025年期间,在教育、科研、开发、融资、应用等等各个方面,大力支持发展第三代半导体产业,以期实现产业独立自主。当前,以碳化硅为代表的第三代半导体已逐渐受到国内外市场重视,不少半导体厂商已率

氮化镓半导体材料的反应方程式

GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,其可逆的反应方程式为:Ga+NH3=GaN+3/2H2生长GaN需要一定的生长温度,且需要一定的NH3分压。人们通常采用的方法有常规MOCVD(包括APMOCVD、LPMOCVD)、等离子体增强MOCVD(PE—MOCVD

氮化镓半导体材料新型电子器件应用

GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效

氮化镓半导体材料光电器件应用介绍

GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批

机器真的“知道”我们是否生病?

  近日,来自美国的研究人员宣布,他们开发了一种新算法(计算机工具),其能够通过对照片进行分析来鉴别皮肤癌。相比肉眼判断而言,这种新方法能够对一块皮肤进行扫描来寻找常见危险形式的皮肤癌,研究者表示,这种方法能够帮助具备医师资格认证的皮肤科医生来区分两种形式的皮肤癌:角化细胞癌和恶性黑色素瘤。  皮肤

日本研制出电能损耗减半的下一代半导体

   据《日本经济新闻》2015年5月18日报道,日本松下电器研发出利用氮化镓制作的半导体,电能损耗较现有同类制品降低50%。计划于2016年实现量产。   目前,氮化镓做为半导体材料多被用于蓝光二级管(LED)。控制电压的半导体多用碳化硅制作。由于其优异的节电性能,氮化镓被称为替代碳化硅的“终极半

下一代半导体的宽与窄

  随着以氮化镓、碳化硅为代表的第三代半导体步入产业化阶段,对新一代半导体材料的探讨已经进入大众视野。走向产业化的锑化物,以及国内外高度关注的氧化镓、金刚石、氮化铝镓等,都被视为新一代半导体材料的重要方向。从带隙宽度来看,锑化物属于窄带半导体,而氧化镓、金刚石、氮化铝属于超宽禁带半导体。  超宽禁带

晶能光电推进硅衬底LED产业化

  在日前举行的广州国际照明展上,晶能光电公司展出的6英寸硅衬底LED芯片,以及联合晶和照明推出的采用硅衬底大功率LED芯片的硅衬底模组,引起了国内外众多行业人士的广泛关注。   据了解,晶能光电创新性地运用“硅”代替传统的“蓝宝石”或“碳化硅”作为衬底制造氮化镓基LED器件,在全球

我国攻克1200V以上增强型氮化镓电力电子芯片量产技术

7月8日至10日,首届全国“红旗杯”班组长大赛国防科技工业赛道复赛在江苏南京举行。复赛以“培育卓越班组长,共筑制造强国梦”为主题,共产生个人一等奖1名、二等奖3名、三等奖6名、优胜奖30名,这40名获奖选手将参加在吉林长春举办的全国总决赛。国防科技工业赛道复赛开幕式现场。             

氮化镓基LED用蓝宝石图形衬底-关键技术研究通过验收

  3月14日,由中国科学院半导体研究所承担的北京市科委“氮化镓基LED用蓝宝石图形衬底关键技术研究”项目顺利通过北京市科委组织专家组验收。专家们一致认为:项目的实施有利于提高半导体照明行业自主创新能力和产业竞争力,对推动北京市乃至全国半导体照明行业上游关键材料的发展具有重要的意义。   在北京市

第三代半导体材料氮化镓(GaN)技术与优势详解(一)

  第三代 半导体材料——氮化镓( GaN),作为时下新兴的半导体工艺技术,提供超越硅的多种优势。与硅器件相比,GaN在 电源转换效率和功率密度上实现了性能的飞跃,广泛应用于 功率因数校正(PFC)、软开关 DC-DC等电源系统设计,以及电源适配器、光伏 逆变器或 太阳能逆变器、服务

第三代半导体材料氮化镓(GaN)技术与优势详解(三)

  设计注意事项  采用GaN设计电源时,为降低系统EMI,需考虑几个关键因素:首先,对于Cascode结构的GaN,阈值非常稳定地设定在2 V,即5 V导通,0 V关断,且提供±18 V门极电压,因而无需特别的驱动器。其次,布板很重要,尽量以短距离、小回路为原则,以最大限度地减少元

第三代半导体材料氮化镓(GaN)技术与优势详解(二)

  Cascode相当于由GaN HEMT和低压MOSFET组成:GaN HEMT可承受高电压,过电压能力达到750 V,并提供低导通电阻,而低压MOSFET提供低门极驱动和低反向恢复。HEMT是高电子迁移率晶体管的英文缩写,通过二维电子气在横向传导电流下进行传导。图1:GaN内部架构及

评论:阻击禽流感须反思我们的生活方式

  H7N9病毒在我国多地发现,上海从鸡鸽等样品中检出H7N9,已关闭全部活禽交易区,对商贩和养殖户的损失,政府将给予补偿。杭州从一家农副产品商行销售的活禽鹌鹑中检出N7H9病毒,正扑杀存放的所有活禽。(4月6日《西安晚报》)   据世卫组织通报,H7N9属于新型禽流感病毒,对其认识甚少,尚无疫苗

宽带隙半导体材料的特性

氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;金刚石如果做成半导体,温度可以更高,器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要应用。广

宽带隙半导体材料的特征

氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;金刚石如果做成半导体,温度可以更高,器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要应用。广

磷化铟?“老了点”-石墨烯?“窄了点”

  “磷化铟?这是不是写错了?”7日上午,政协委员分组讨论“十三五”规划纲要。中科院上海技术物理研究所研究员何力对半导体材料和器件研究多年,而“十三五”规划纲要中关于高端材料的一段话却让他困惑——“ 大力发展形状记忆合金、自修复材料等智能材料,石墨烯、超材料等纳米功能材料,磷化铟、碳化硅等下一代半导

珠海:重点发展8英寸、12英寸硅片等新一代化合物半导体衬底材料及外延片

珠海市工业和信息化局公开征求 《珠海市电子化学品产业发展三年行动方案(2025—2027年)(征求意见稿)》 意见。其中提到,重点发展8英寸、12英寸硅片,碳化硅、氮化镓、磷化铟等新一代化合物半导体衬底材料及外延片;前瞻布局氧化镓、锑化镓、锑化铟等第四代半导体材料。同时,重点发展匀胶铬版光掩模版,K

微电子所在氮化镓界面态研究方面取得进展

  近日,中国科学院微电子研究所高频高压中心研究员刘新宇团队等在GaN界面态研究领域取得进展,在LPCVD-SiNx/GaN界面获得原子级平整界面和国际先进水平的界面态特性,提出了适用于较宽能量范围的界面态U型分布函数,实现了离散能级与界面态的分离。  增强型氮化镓MIS-HEMT是目前尚未成功商用

氮化镓基无源太赫兹相控阵机制研究获进展

随着无线通信技术的发展,太赫兹波因超宽带、高定向性和高分辨率等优势,成为6G通信的重要频谱资源。然而,频率升高带来的路径损耗加剧和信号源输出功率降低等问题,使系统对高精度、低损耗、大视场的波束控制器件提出严苛要求。近日,中国科学院苏州纳米技术与纳米仿生研究所秦华团队提出并研制了基于氮化镓肖特基二极管

氮化镓基无源太赫兹相控阵机制研究获进展

随着无线通信技术的发展,太赫兹波因超宽带、高定向性和高分辨率等优势,成为6G通信的重要频谱资源。然而,频率升高带来的路径损耗加剧和信号源输出功率降低等问题,使系统对高精度、低损耗、大视场的波束控制器件提出严苛要求。近日,中国科学院苏州纳米技术与纳米仿生研究所秦华团队提出并研制了基于氮化镓肖特基二极管

GaN:实现-5G-的关键技术

日前,由 EETOP 联合 KEYSIGHT 共同举办的“2020 中国半导体芯动力高峰论坛”隆重举行。Qorvo 无线基础设施部门高级应用工程师周鹏飞也受邀参与了这次盛会,并发表了题为《实现 5G 的关键技术—— GaN》的演讲。 首先,周鹏飞给我们介绍了无线基础设施的发展。他表示

基因检测:我们真的想知道结果吗?

  英国金融时报网20日发表该报美国商业资深记者为大卫·克罗撰写的题为《基因检测:我们真的想知道结果吗?》的文章。文章说,我的母系亲属有多人患了癌症。我做了一次基因检测。但如果没有治愈之方,提前知道了结果又有什么用呢?  这是我永生难忘的通话之一。我妈妈的大哥、我们家的实际领袖约翰舅舅打电话告诉我他

氮化镓植于石墨烯可制成随意折叠变形的LED材料

  目前,许多由有机材料制造的电子和光电子材料都具备良好的柔韧度,易于改变形状。与此同时,不易形变的无机化合物在制造光学、电气和机械元件方面展现出了强大的性能。但由于技术原因,二者却很难优势互补,功能优异的无机化合物半导体也因不易塑形的特点而遇到了发展障碍。  幸好,氮化镓与石墨烯的结合,部分实现了

香山科学会议聚焦宽禁带半导体

  “随着第三代半导体材料、器件及应用技术不断取得突破,甚至可能在21世纪上半叶,导致一场新的信息和能源技术革命。”在11月8日召开的以“宽禁带半导体发光的发展战略”为主题的第641次香山科学会议上,与会专家指出,宽禁带半导体核心技术一旦解决,必将引起应用格局的巨大改变。  如今,半导体发展已经历了

苏州纳米所在新型氮化镓基光电器件领域取得进展

  近年来,大数据、互联网和人工智能的快速发展,对数据处理的速度和效率提出了更高的要求。人类大脑是最复杂的计算系统之一,可以通过密集协调的突触和神经元网络同时存储、整合和处理大量的数据信息,兼具高速和低功耗的优势。受人脑的启发,人工突触器件应运而生。人工突触器件因具有同时处理和记忆数据的能力而备受关

我团队研制出世界首个氮化镓量子光源芯片

4月18日,记者从电子科技大学信息与量子实验室获悉,近日,该实验室研究团队与清华大学、中国科学院上海微系统与信息技术研究所合作,在国际上首次研制出氮化镓量子光源芯片,这也是电子科技大学“银杏一号”城域量子互联网研究平台取得的又一项重要进展,相关成果发表在《物理评论快报》上。据了解,量子光源芯片是量子

我国团队研制出世界首个氮化镓量子光源芯片

4月18日,记者从电子科技大学信息与量子实验室获悉,近日,该实验室研究团队与清华大学、中国科学院上海微系统与信息技术研究所合作,在国际上首次研制出氮化镓量子光源芯片,这也是电子科技大学“银杏一号”城域量子互联网研究平台取得的又一项重要进展,相关成果发表在《物理评论快报》上。据了解,量子光源芯片是量子

我国团队研制出世界首个氮化镓量子光源芯片

近日,该实验室研究团队与清华大学、中国科学院上海微系统与信息技术研究所合作,在国际上首次研制出氮化镓量子光源芯片,这也是电子科技大学“银杏一号”城域量子互联网研究平台取得的又一项重要进展,相关成果发表在《物理评论快报》上。据了解,量子光源芯片是量子互联网的核心器件,可以看作点亮“量子房间”的“量子灯

特殊材料取代硅造出半导体薄膜

  美国麻省理工学院(MIT)工程师最近开发出一种新技术,他们用一批特殊材料取代硅,制造出了超薄的半导体薄膜。新技术为科学家提供了一种制造柔性电子器件的低成本方案,且得到的电子器件的性能将优于现有硅基设备,有望在未来的智慧城市中“大展拳脚”。  如今,绝大多数计算设备都由硅制成,硅是地球上含量第二丰