氮气发生器制氮系统原理

氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集物氮气。碳分子筛对氧和氮在不同压力下某一时间内吸附量的变化差异曲线:一段时间后,分子筛对氧的吸附达到平衡,根据碳分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使碳分子筛解除对氧的吸附,这一过程为再生。根据再生压力的不同,可分为真空再生和常压再生。常压再生利于分子筛的彻底再生,易于获得高纯度气体。高纯氮气发生器变压吸附制氮机(简称PSA制氮机)是按变压吸附技术设计、制造的氮气发生设备。通常使用两吸附塔并联,由全自动控制系统按特定可编程序严格控制时序,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。碳分子筛(CM......阅读全文

氮气发生器制氮系统原理

氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集

氮气发生器的制氮原理

氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集

氮气发生器的制氮工作原理

制氮机系统原理氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件

氮气发生器的制氮原理介绍

氮气发生器是如何产生氮气的呢,通常来说,有三种方法。1.电化学制备氮气将高压空气从氢气电解池的阴极一侧通入,在催化剂的催化作用下,进行2H2+O2=2H2O的氧化还原反应,通过此方法可去除空气中的O2,产出高达99.995%N2,然而此方法有的局限性。一是此方法只是单纯的去除空气中的O2,对于空气中

有关氮气发生器的制氮原理介绍

   氮气发生器利用压缩机对氮气进行压缩,贮藏在贮气罐内,方便日后使用,压缩器主要由压缩机、储气罐、过滤器、干燥器等组成;    压缩空气经压缩后进入冷干机降温脱水,在经过过滤器除油、除尘;    然后进入装有碳分子筛的吸附塔,选择性地吸附掉氧气、二氧化碳等杂质气体组分,产生高纯度氮气。

氮气发生器PSA变压吸附制氮原理

PSA变压吸附制氮。利用氮气与其它气体分子在分子筛中的吸附能力差异,形成浓度差异的积累,在分子筛柱末端产出高纯度氮气。同时利用两根分子筛柱,一根吸附的同时引出一部分产品气为另一根解析,实现分子筛在线再生,整体表现即为仪器持续输出高纯氮气。这类发生器可根据需要,调节氮气的纯度和流量,可生产99.999

氮气发生器三种制氮原理的介绍

1.电化学法制氮(需“加液”)采用电化学法制氮的发生器可以制取纯氮、氧气等气体。它利用恒定电位电解法,采用微孔膜(例如石棉膜)作为两电极的分隔板,多孔气体扩散型氧电极为阴极,镍网为阳极,且电极安装是采用硬支撑结构。该发生器可在氮、氧气室压差(1MPa)下稳定工作,可避免阴极氢析出,保证产生气体的纯度

氮气发生器PSA变压吸附制氮法介绍

PSA变压吸附制氮。利用氮气与其它气体分子在分子筛中的吸附能力差异,形成浓度差异的积累,在分子筛柱末端产出高纯度氮气。同时利用两根分子筛柱,一根吸附的同时引出一部分产品气为另一根解析,实现分子筛在线再生,整体表现即为仪器持续输出高纯氮气。这类发生器可根据需要,调节氮气的纯度和流量,可生产99.999

氮气发生器的制氮技术有那些区别?

  氮气发生器两种制氮技术的不同点?对比两者,我们可以发现:  1、尺寸和重量  氮气膜尺寸小,重量轻,结构紧凑,更轻盈小巧,对于空间很有限的实验室而言无疑是完美的选择。  2、噪音  膜分离技术不产生任何噪音,这也就意味着膜分离氮气发生器能放在应用仪器旁边,无需将发生器放在另外一个房间,从而减少了

实验室氮气发生器的碳分子筛制氮原理

  碳分子筛制氮原理:以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称psa制氮。实验室PSA氮气发生器以空气作为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,与传统制氮法相比,它具

氮气发生器的系统原理

氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集

氮气发生器的制氮技术有什么不同点

  两种制氮技术的不同点?对比两者,我们可以发现:  1、尺寸和重量  氮气膜尺寸小,重量轻,结构紧凑,轻盈小巧,对于空间很有限的实验室而言无疑是好的选择。  2、噪音  膜分离技术不产生任何噪音,这也就意味着膜分离氮气发生器能放在应用仪器旁边,无需将发生器放在另外一个房间,从而减少了管道延长所产生

氮气发生器的制氮技术有什么不同点?

氮气发生器两种制氮技术的不同点?对比两者,我们可以发现:  1、尺寸和重量  氮气膜尺寸小,重量轻,结构紧凑,更轻盈小巧,对于空间很有限的实验室而言无疑是完美的选择。  2、噪音  膜分离技术不产生任何噪音,这也就意味着膜分离氮气发生器能放在应用仪器旁边,无需将发生器放在另外一个房间,从而减少了管道

影响高纯氮气发生器制氮纯度的因素有哪些

高纯氮气发生器的制氮纯度会受到以下因素的影响:  (1)气体原料的质量  气体是要经压缩后进入空气缓冲罐,那么压缩空气中如含有水汽、油雾,这些都会堵塞分子筛(CMS)的微孔,从而严重影响分离效果及CMS的使用寿命,因此,要想获得高纯度的氮气,空气至关重要,并且要经多次净化过滤,滤芯需要定期检查或者更

氮吹仪专用氮气发生器的工作原理

氮吹仪专用氮气发生器的工作原理是通过空气压缩机将外界的空气收集到储气罐中,再将空气通入电解分离池,氮气和氧气在电解池内产生分离。氧气被释放到大气中,氮气经过净化、干燥后输出。仪器通过系统压力可以自动调节氮气输出量,并迅速稳定。

氮气发生器制氮纯度不达标时应从哪几方面分析?

   氮气发生器利用氮气与其它气体分子在分子筛中的吸附能力差异,形成浓度差异的积累,在分子筛柱末端产出高纯度氮气,再利用两根分子筛柱,一根吸附的同时引出一部分产品气为另一根解析,实现分子筛在线再生,整体表现即为仪器持续输出高纯氮气。其原理是将空气作为原料,在经压缩和净化后进入空气缓冲罐,缓冲上游因压

氮气发生器原理

氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集

氮气发生器的原理

  氮气发生器是一套能提取氮气的设备,它主要应用领域为:航空航天、核电核能、食品医药、石油化工、电子工业、材料工业、国防军工和科学实验等领域。为便于大家了解现状,下面我来介绍几种应用于气相色谱分析实验的氮气发生器原理,仅供大家参考。  1、电化学法制氮;  2、采用中空纤维膜分离法;  3、PSA变

氮气发生器的组成系统

氮气发生器主要由电解系统、压力控制系统、净化系统和显示系统组成。氮气发生器能否很好地应用于气相色谱分析实验,与发生器的原理有很大关系。

氮气发生器膜分离法制氮

变压吸附(PSA)&碳分子筛法制氮1、变压吸附的原理变压吸附是用于分离混合气体,提取某一气体组分的技术,是指在系统温度维持不变的情况下,通过升高或降低系统的压力来不断地改变吸附剂的吸附量从而达到组分分离的方法;主要体现在较高压力下进行吸附,在较低压力下(常压或真空)使吸附的组分解吸出来,从而得到得到

氮气发生器膜分离法制氮

利用膜(中空纤维膜)分离法制氮的基本原理是:当两种或两种以上的气体混合物通过中空纤维膜时, 由于气体在膜中的溶解度和扩散系数有差异, 因而这些气体在膜中的相对渗透率是不同的。当混合气体在驱动力(膜两侧压力差) 作用下通过中空纤维膜时, 渗透速率相对快的气体, 如水、氢气、硫化氢、二氧化碳等, 快速透

氮吹仪氮气发生器膜技术

氮吹仪氮气发生器 型号:DFCMW-60L型号说明:D-氮气  F-发生器  C-氮吹仪   M-膜分离  W-无油压缩机用户自己配泵 或产生厂家配套        DFCMW系列氮吹仪氮气发生器专用于氮吹仪浓缩用气,使样品中含有的未知多类、多中农、兽药残留物顺速得到分离、净化,现已广泛应用在医学测

氮气吹扫仪氮气反应原理(氮吹仪专用氮气)

(1)氮气吹扫仪氮气反应原理:NH3·H2O=====△ NH3↑+H2O。 (2)装置:右图   3.浓氨水中加固态碱性物质 (1)原理:    浓氨水中存在以下平衡:NH3+H2ONH3·H2ONH+ 4   +OH- ,加入固态碱性物质(如CaO、NaOH、碱石灰等),   使平衡逆向

高纯氮气发生器采用电解液循环方式制氮缺点有哪些

 高纯氮气发生器采用电化学分离法和物理吸附法的高纯氮气发生器可以制取纯氮、氧气等气体。它利用恒定电位电解法,采用微孔膜(例如石棉膜)作为两电极的分隔板,多孔气体扩散型氧电极为阴极,镍网为阳极,且电极安装是采用硬支撑结构。  具体制取氮气的方法是以空气为原料将气体送入有电解液的电解槽,在两电极间加上电

氮气发生器的原理介绍

   氮气发生器是一种先进的气体分离技术,以优质进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。    制氮机系统原理    氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气

氮气发生器按照原理分类

  氮气是最常用的惰性气体,价格低廉,易制无毒,在实验室中常用做色谱载气、吹扫、保护等。实验室的氮气来源主要有三种,一是钢瓶气,二是管道气,三是氮气发生器。钢瓶气气体质量高,但钢瓶属于压力容器,运输和保存需要一定的资质,偏远地区更换麻烦,费用高;管道气为大规模制氮,统一调度使用,适合大型工厂或用气单

氮气发生器的工作原理

  氮气发生器主要由电解系统、压力控制系统、净化系统和显示系统组成。氮气发生器能否很好地应用于气相色谱分析实验,与发生器的原理有很大关系。氮气发生器的工作原理大致分为三种:1.以电化学分离法和物理吸附法相结合的方式;2.采用中空纤维膜分离;3.采用气相色谱技术用新型合成分子筛分离。下面我们就具体来介

氮气发生器的原理简介

  氮气发生器的工作原理是分离空气,电解膜的负极侧发生氧化反应,吃掉空气中的氧化性气体,在正极侧还原,空气流过电解池后就只剩下氮气和惰性气体,故国内发生器的纯度大多标有“相对含氧量”,氮气的纯度和空气流速,有效分解面的长度,电解电势的强弱都有关系,这种分离方法也决定了氮气的纯度不可能做的很高。 加入

氮气发生器按原理分类

   氮气是常用的惰性气体,价格低廉,易制无毒,在实验室中常用做色谱载气、吹扫、保护等。实验室的氮气来源主要有三种,一是钢瓶气,二是管道气,三是氮气发生器。氮气发生器为现场制氮,多为小型气站或者实验室仪器或小型生产线单独一对一配套,使用灵活、费用可控,对运输和保存没有特殊要求,为越来越多的实验室用户

PARKER氮气发生器工作原理

  PARKER氮气发生器工作原理    PARKER氮气发生器是利用压缩机对氮气进行压缩,贮藏在贮气罐内,方便日后使用,压缩器主要由压缩机、储气罐、过滤器、干燥器等组成,压缩空气经压缩后进入冷干机降温脱水,在经过过滤器除油、除尘,然后进入装有碳分子筛的吸附塔,选择性地吸附掉氧气、二氧化碳等杂质气