RNA研究先驱Nature获piRNA突破性新发现
来自冷泉港实验室的科学家们取得重要进展,了解保护动物基因组防止称作转座子的潜在危险遗传元件这一过程的最早期步骤。如果失去控制,这些基因组寄生物可能会肆意泛滥,导致不育。 冷泉港实验室的Gregory J. Hannon教授和Leemor Joshua-Tor共同领导了这一研究。Hannon教授是小RNA研究领域的先驱,曾主编了冷泉港实验室技术手册:《MicroRNA研究方法》等。结构生物学家Joshua-Tor在结构生物学领域所获成果颇丰,她曾与清华大学施一公教授是同年选上HHMI研究员。 在这篇文章中,Hannon和Joshua-Tor联手借助在生殖细胞中生成的一类称作Piwi-interacting RNA (piRNA)的基因组卫士来详细探查了这一过程。 piRNAs是26-31个核苷酸长度,结合一类称为PIWIs的生殖特异性蛋白结合的小RNA分子。两者一起形成一种称作RISC(RNA诱导沉默......阅读全文
生殖细胞的生物学特性
分化在单细胞生物群体中已有生殖细胞分化的迹象。如团藻科的杂球藻有4个较小的细胞失去分裂能力,专司运动和代谢,称为营养个体,其余28个细胞具有分裂能力,称为生殖个体;团藻则在大多数小型营养细胞间出现了少数大的生殖细胞。极质,其中富含核糖核酸(RNA)的小颗粒叫极颗粒。经过受精、卵裂,含有极颗粒的细胞称
黄连基因组公布,黄连生物碱生物合成机制被公开
2021年6月,湖北中医药大学刘义飞研究组联合中国中医科学院中药所陈士林团队、湖北省药品监督检验研究院汪波、聂晶团队、华中农业大学王学奎团队等单位合作在Nature Communications杂志在线发表了题为“Analysis of the Coptis chinensis genome r
染色体级别橡胶基因组研究揭秘乳胶生物合成
橡胶树是大戟科植物。在植物界大约2500种产胶植物中,橡胶树产生的以聚异戊二烯为主要功能成分的天然胶乳约占全球天然橡胶的98% 以上。图片来源于网络 比起可能造成巨大环境污染的人工合成橡胶产业,天然橡胶因其良好的弹性、伸展性、耐老化等综合理化性能而具有不可替代性,是任何国家必须具备的重要战略
高质量基因组揭示草果特有风味物质生物合成
近日,华南农业大学联合怒江绿色香料产业研究院、中国农业科学院深圳基因组研究所、广东药科大学等8家单位完成了草果(Amomum tsao-ko)高质量基因组组装工作及解析草果特有风味物质生物合成。相关研究在线发表于Horticulture Research。 草果是姜科豆蔻属重要的香料作物,也是传
原始生殖细胞的生物学特点
分布多数脊椎动物原肠胚期的原始生殖细胞分布于肠道、卵黄囊或尿囊基部的内胚层细胞间。迁移在发育中借变形运动或进入血流而沿肠壁迁移,或进入背肠系膜,最终达到正在发育的生殖嵴处,并和生殖嵴的中胚层细胞共同组成睾丸或卵巢。分化原始生殖细胞在未进入生殖嵴之前,既可分化为精原细胞,又可分化为卵原细胞,这种分化是
合成基因组学公司推出DNA生物打印的数字生物转换器
2017年8月,合成基因组学公司(Synthetic Genomics,SG)研究团队发布了一款数字生物转换器(digital-to-biological converter),能够将描述DNA、RNA或蛋白质的数字化信息发送到设备,并将其打印成原始生物材料的合成版本。该项研究发表在最新出版的《
NCB:能量合成关键酶促进生殖细胞分化新发现
近日,来自美国纽约大学医学院的研究人员在国际学术期刊nature cell biology在线发表了一项最新科研进展,他们利用果蝇生殖干细胞对细胞分化所需基因进行分析发现线粒体ATP合成酶对生殖干细胞分化具有重要促进作用,并且这一作用并不依赖于ATP合成酶在氧化磷酸化过程中的功能。 干细胞分化
关于原始生殖细胞的生物学特点
原始生殖细胞,是产生雄性和雌性生殖细胞的早期细胞。各类动物早期胚胎内开始出现成群原始生殖细胞的部位不同。原始生殖细胞比其周围的其他细胞大,细胞内碱性磷酸酶、酯酶及糖原都呈阳性,易和其他细胞区分。 分布 多数脊椎动物 原肠胚期的原始生殖细胞分布于肠道、 卵黄囊或 尿囊基部的 内胚层细胞间。
全球研究人员致力于创造首个合成真核生物基因组
10年前,当遗传学家Ronald Davis首次提出,他的同事正在尝试创造人工酵母染色体,并将其放入活细胞时,Jef Boeke并没有太多想法。Davis就职于美国加州斯坦福大学医学院,是一个有远见的人。他提出,实验室酵母是当时合成生物学领域的下一个发展方向。不过,Boeke并不理
叶绿素的生物合成
叶绿素和血红素的生物合成前体是ALA(氨基乙酰丙酸),两分子由谷氨酸合成的δ氨基乙酰丙酸(ALA)反应生成胆色素原(PBG)。4个PBG 分子形成原卟啉IX 的环状结构,叶绿素合成的第一步是由镁螯合酶插入Mg 离子,形成Mg-原卟啉,之后形成原叶绿素酯,再还原生成叶绿素酯。[1][2] 叶绿素
叶绿素的生物合成
通过同位素标记实验、酶学研究和突变体分析,目前已经对叶绿素生物合成的途径有了详细的了解。 叶绿素和血红素的生物合成前体是ALA(氨基乙酰丙酸),两分子由谷氨酸合成的δ氨基乙酰丙酸(ALA)反应生成胆色素原(PBG)。4个PBG 分子形成原卟啉IX 的环状结构,叶绿素合成的第一步是由镁螯合酶插入
多肽的生物合成
同时,游离在细胞质中的转运RNA(tRNA)把它携带的特定氨基酸放在核糖体的mRNA的相应位置上,然后tRNA离开核糖体,再去搬运相应的氨基酸(amino acid),这样,在合成开始时,总是携带甲硫氨酸的tRNA先进入核糖体,接着带有第二个氨基酸的tRNA才进入,此时带甲硫氨酸的tRNA把甲硫氨酸
脂肪的生物合成
脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合
燕麦基因组草图绘制并解析出燕麦素的生物合成基因簇
5月7日,中国科学院分子植物科学卓越创新中心(CEMPS)、中科院-英国约翰英纳斯中心植物和微生物科学联合研究中心(CEPAMS)韩斌研究团队与英国约翰英纳斯中心John Innes Centre(JIC)Anne Osbourn研究团队合作完成了禾本科、燕麦属一年生草本植物二倍体燕麦Avena
天然合成和生物合成聚合物的生物降解
在CC骨干基于聚合物往往难以降解,而含杂原子的聚合物骨架赋予生物降解性。 因此,生物可降解性聚合物设计成通过明智的另外的化学品,如酸酐,酯或酰胺键,其中包括的联系。 降解的常见机制是通过水解或酶不稳定基的杂原子键的裂解,从而导致在聚合物主链中的断裂的。 底质可以吃,有时消化聚合物,并同时启动的机械
RNA研究先驱Nature获piRNA突破性新发现
来自冷泉港实验室的科学家们取得重要进展,了解保护动物基因组防止称作转座子的潜在危险遗传元件这一过程的最早期步骤。如果失去控制,这些基因组寄生物可能会肆意泛滥,导致不育。 冷泉港实验室的Gregory J. Hannon教授和Leemor Joshua-Tor共同领导了这一研究。Hann
生物合成的基本简介
生物合成 biosynthesis,生物体内进行的同化反应的总称。生物合成具有如下几种不同的生理意义。 (1)合成生长增值所必需的物质。 (2)在稳定状态时,合成用于补充消耗掉的成的物质。 (3)分为长期和短期的贮藏,进行必要的合成。一般来说,生物合成是吸能反应,多数是朝向使分子结构复杂化
莽草酸生物合成途径
糖酵解产生的磷酸烯醇式丙酮酸(PEP)和戊糖磷酸途径产生的D-赤藓糖-4-磷酸作用形成中间产物3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸,进一步环化成重要中间产物莽草酸。莽草酸再与PEP作用,形成3-烯醇丙酮酸莽草酸-5-磷酸,脱去Pi,形成分支酸。分支酸是莽草酸途径的重要枢纽物质,它以后的去向分为两个
生物方法合成甘氨酸
20世纪80年代后期,日本三菱公司把过筛选的好氧土壤杆菌属、短杆菌属、棒状杆菌属等微生物菌属加入到含有碳源、氮源及无机营养液的介质中进行培植,然后将该类菌种在25~45℃,pH在4~9的情况下,使乙醇胺转化为甘氨酸,用浓缩中和离子交换处理得到甘氨酸。
生物合成有哪些类型?
光合作用:光合作用(photosynthensis)是生物界中规模最大的有机合成过程,通过光合作用使太阳能转变为化学能储存于碳水化合物中,每年约为8×10博kJ。放出的氧气约5.35×1011t,同化的碳素约2×1011t。糖异生::糖异生(gluconeogenesis)作用是由非糖前体如丙酮酸、
生物合成的生理意义
生物体内进行的同化反应的总称。生物合成具有如下几种不同的生理意义。(1)合成生长增值所必需的物质。(2)在稳定状态时,合成用于补充消耗掉的成的物质。(3)为长期和短期的贮藏,进行必要的合成。一般来说,生物合成是吸能反应,多数是朝向使分子结构复杂化的方向进行。能量供给最典型的是由ATP供给,也有通过G
叶绿素a的生物合成途径
叶绿素a的生物合成途径,是由琥珀酰辅酶A和甘氨酸缩合成δ-氨基乙酰丙酸,两个δ-氨基乙酰丙酸缩合成吡咯衍生物胆色素原,然后再由4个胆色素原聚合成一个卟啉环──原卟啉Ⅳ,原卟啉Ⅳ是形成叶绿素和亚铁血红素的共同前体,与亚铁结合就成亚铁血红素,与镁结合就成镁原卟啉。镁原卟啉再接受一个甲基,经环化后成为具有
泛酸的生物合成途径
维生素B5是由α-酮异戊酸和L-天冬氨酸两种物质经过四步酶促反应生成。最后在泛酸合成酶的催化下由ATP提供能量连接β-Ala和泛解酸生成维生素B5。利用E.coli泛酸缺陷型菌株证明了泛酸的生物合成途径是L-Val生物合成的分支。因此如果微生物失去合成L-Val、β-Ala或半胱氨酸的能力也将无法合
中科院Cell子刊解析piRNA作用通路
来自中科院上海生命科学研究院的研究人员近日在新研究中证实,piRNA在精子发生后期通过APC/C触发了MIWI泛素化及MIWI/piRNA机器清除。这一研究发现对于深入了解piRNA作用通路在哺乳动物精子发生中的功能机制具有重要意义。相关论文发布在1月14日的《发育生物学》(Developmen
我国化学家取得真核生物基因组设计与化学合成重大突破
在国家自然科学基金创新研究群体项目和重大项目(项目编号:21621004,21390203)等资助下,天津大学元英进团队在真核生物基因组设计与化学合成方向取得重大突破。该团队完成了2条真核生物酿酒酵母染色体(synⅤ、synⅩ)的从头设计与化学合成,相关研究成果分别以“‘Perfect’desi
-合成生物学:操纵生物制造业
如果有一天,自然界中的各种生物可以直接用来充当生产产品的机器或者车间,那么,工业生产或许会发生翻天覆地的变化。 现如今,这一完美的构想正在逐步落地。 自从生物产业被列为国家战略性新兴产业加以培育后,生物制造业也加快了取代化工产业的步伐。而合成生物学由于能够通过人工设计和构建自然界中不
皮质类固醇的生物合成
类固醇激素在人体内均是以胆固醇为原料,经过一系列酶促反应而合成的,只是由于某些酶活性在某些内分泌腺或同一腺体不同的组织中特别高,从而生成不同的激素。
关于生物合成的分类介绍
光合作用:光合作用(photosynthensis)是生物界中规模最大的有机合成过程,通过光合作用使太阳能转变为化学能储存于碳水化合物中,每年约为8×10博kJ。放出的氧气约5.35×1011t,同化的碳素约2×1011t。 糖异生::糖异生(gluconeogenesis)作用是由非糖前体如
核糖体的生物合成
细菌细胞通过多个核糖体基因操纵子的转录在细胞质中合成核糖体。在真核生物中,该合成过程发生在细胞质和核仁中,组装过程涉及四种rRNA合成、加工和组装中协调作用的超过200种的蛋白质。
核糖体的生物合成
细菌细胞通过多个核糖体基因操纵子的转录在细胞质中合成核糖体。在真核生物中,该合成过程发生在细胞质和核仁中,组装过程涉及四种rRNA合成、加工和组装中协调作用的超过200种的蛋白质。