解读2014Nobel化学奖:超分辨率荧光显微技术
【摘要】2014年诺贝尔化学奖授予Eric Betzig,Stefan W. Hell和William E. Moerner3位科学家,以表彰他们在超分辨率荧光显微成像技术方面的重大贡献。本文从显微镜分辨率的起因入手,对超分辨荧光显微技术进行了深入阐述。此外,对光学显微技术的发展前景进行展望。2014年诺贝尔化学奖授予发展超分辨率荧光显微成像技术的3位科学家,他们分别是美国霍华德·休斯医学研究所教授Eric Betzig、德国马克斯普朗克生物物理化学研究所教授Stefan W. Hell和美国斯坦福大学教授William E. Moerner。1 荧光显微镜的发明历程光学显微镜自发明伊始,即与生命科学结下了不解之缘。16世纪末期,荷兰眼镜商Zaccharias Janssen和他的儿子把两个凸透镜放到一个镜筒中,结果发现镜筒能放大物体,这就是显微镜的前身。随后,荷兰人Anthony Von Leeuwenhoek通过精密研磨的玻......阅读全文
季铵哌嗪如何实现荧光超分辨率成像?
近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但
用普通共聚焦显微镜实现超分辨率单分子荧光成像
传统的细胞及其内部分子显微观察通常使用荧光染料,然后再用不同分辨率的显微术照亮单个分子和与其互动的其他物质。如下图所示,普通共聚焦显微镜和超分辨率显微镜的精准度差异一目了然。(普通共聚焦显微镜观察图,比例尺10μm。图片来自发表文章DOI: 10.1038/s41467-017-00688-0)(随
山西大学最新文章;新型超分辨率荧光成像
来自山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室的研究人员将荧光探针分子ALEXA647标记在仿生水凝胶的聚合物链上, 利用全内反射荧光显微镜进行荧光成像, 并采用超分辨率光学波动成像的方法(SOFI)对仿生水凝胶的荧光成像进行超分辨率成像分析。 通过SOFI成像及反卷积处理获得
超分辨率显微镜成像助力学者探询神经回路
来自哈佛大学的研究人员报告称,她们采用超高分辨率成像绘制出了神经元突触输入区的图谱。这一重要的研究成果发布在10月8日的《细胞》(Cell)杂志上。 论文的通讯作者是著名的华人女科学家庄小威(Xiaowei Zhuang)。庄小威早年毕业于中国科技大学少年班,34岁时成为了哈佛大学的化学和物理双
超分辨率荧光显微镜技术成功运用于外泌体的成像和追踪
外泌体是由细胞分泌的小膜泡,富含大量的蛋白质。考虑到外泌体在不同生理活动中的显著作用以及在诊断、药物释放方面潜在的价值,研究人员在外泌体的体外追踪和内含物分析方面做了很大的努力。 目前,各种超分辨率显微镜的出现为外泌体的研究提供了强大的工具。2016 年 9 月,东南大学先进光子学中心主任崔一
布鲁克推出Vutara352超分辨率荧光显微镜
分析测试百科网讯 2015年12月14日,布鲁克在2015细胞生物学ASCB年会上推出首款用于定量分析的超分辨率荧光显微镜Vutara352。Vutara352不仅在速度、成像深度和分辨率等方面具有优势,还加入了实时定量能力。这款产品拥有许多新功能,包括执行偶关联、协同定位、群集分析、活细胞分析
超分辨率显微镜分析在荧光抗体筛选的应用
1873年,德国医师Ernst Abbe 提出了“衍射极限”的概念。他预测,由于光的基本衍射性质,光学显微镜无法实现200nm以下的分辨率。实际上,当两个相隔很近的物点同时发光时,得到的图像是模糊的,无法分辨。超分辨率显微镜(SRM)的诞生打破了一个世纪多以来一直被认为无法突破的瓶颈。 如今,科
超分辨率显微镜实现自由运动神经环路高分辨成像
提到在体小动物神经成像,人们自然会联想到钙离子荧光探针局部注射或遗传钙指示剂(如Gcamp家族)结合双/三光子显微镜的经典在体成像组合。 随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium ind
新的光学显微镜技术树立活细胞超分辨率成像新标准
来自美国霍华德休斯医学研究所,Janelia研究园的科学家们,借助其发展的新光学超分辨率成像技术,在前所未有的高分辨率条件下研究了活体细胞内的动态生物过程。他们的新方法显著的提高了结构光照明显微镜(structured illumination microscopy, SIM)的分辨率,一种最适
超分辨率荧光显微技术的意义
利用超高分辨率显微镜,可以让科学家们在分子水平上对活体细胞进行研究,如观察活细胞内生物大分子与细胞器微小结构以及细胞功能如何在分子水平表达及编码,对于理解生命过程和疾病发生机理具有重要意义。
计算超分辨图像重建算法拓展荧光显微镜分辨率极限
自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。 近日,发表在《Nature Biotechnology》上的一项题为“Spar
计算超分辨图像重建算法拓展荧光显微镜分辨率极限
自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。 近日,发表在《Nature Biotechnology》上的一项题为“Spar
发明计算超分辨图像重建算法拓展荧光显微镜分辨率极限
自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。 近日,发表在《Nature Biotechnology》上的一项题为“Spar
超分辨率荧光显微技术的技术获奖
2014年10月8日,2014年度诺贝尔化学奖揭晓,美国科学家埃里克·白兹格、威廉姆·艾斯科·莫尔纳尔和德国科学家斯特凡·W·赫尔三人获得。官方称,该奖是为表彰他们在超分辨率荧光显微技术领域取得的成就 。
扫描电子显微镜成像分辨率
扫描电镜是高能电子散射固体材料,可获得许多特征信号! 微观成像是扫描电镜基本功能,要求高分辨,so可为其他特征信号分析提供精确导航! sem一般标配se探测器,用se信号获得高分辨像,且se信号可以充分代表扫描电镜电子光学性能。 why se not other? 比靠斯:在电子束
Science:细胞的MV————新光学超分辨率成像技术
来自美国霍华德休斯医学研究所Janelia研究园、中科院生物物理所、美国国立科学研究院、哈佛医学院等的科学家们,借助其发展的新光学超分辨率成像技术,在前所未有的高分辨率条件下研究了活体细胞内的动态生物过程。他们的新方法显着的提高了结构光照明显微镜(structured illumination
新思路!稀疏傅里叶单像素成像方法-实现超分辨率成像
近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所时东锋等科研人员提出了稀疏傅里叶单像素成像方法,该方法在降低采样数量的同时,能够维持图像质量不发生大的退化。该研究成果发表在最新一期Optics Express上。 傅里叶单像素成像利用傅里叶变换性质,采用具有傅里叶分布的照明光来获取物体
突破超分辨率显微镜极限:自对准显微镜
超越了获得诺贝尔奖的超分辨率显微镜的局限性的超精密显微镜将使科学家们直接测量单个分子之间的距离。新南威尔士大学的医学研究人员在单分子显微镜中检测完整细胞内单个分子之间的相互作用方面已实现了空前的解析能力。2014年诺贝尔化学奖因超分辨率荧光显微镜技术的发展而获奖,该技术为显微镜专家提供了细胞内部的第
超分辨率激光共聚焦显微镜
超分辨率激光共聚焦显微镜是一种用于化学、生物学领域的分析仪器,于2018年7月24日启用。 技术指标 1.在所有扫描方式下,均可以进行360°扫描旋转,0.1°步进,同时可以变倍以及移动扫描区域的中心。 2.扫描光学变倍≥40X,最好缩小≤0.6倍。 3.最大扫描分辨率≥8000 x 800
5纳米分辨率荧光显微镜面世
细胞内部结构究竟如何?标准显微镜在回答这个问题方面无法胜任。在一项最新研究中,来自德国哥廷根大学、哥廷根医学中心和英国牛津大学的科学家,成功开发出一款分辨率达到5纳米的荧光显微镜。这款高分辨率显微镜有望揭示细胞内部极为细微的结构,促进生物医学等领域的发展。相关论文发表于最新一期《自然·光子学》杂志。
5纳米分辨率荧光显微镜面世
细胞内部结构究竟如何?标准显微镜在回答这个问题方面无法胜任。在一项最新研究中,来自德国哥廷根大学、哥廷根医学中心和英国牛津大学的科学家,成功开发出一款分辨率达到5纳米的荧光显微镜。这款高分辨率显微镜有望揭示细胞内部极为细微的结构,促进生物医学等领域的发展。相关论文发表于最新一期《自然·光子学》杂
荧光糖球超分子靶向成像研究获进展
近日,中国科学院上海药物研究所与华东理工大学科研人员合作的有关荧光糖球超分子靶向成像的最新科研成果,发表在《化学通讯》上。 癌症的早期靶向诊疗一直以来深受学术界的关注。研究团队基于构建以氧化石墨烯为基底的有机功能二维复合诊断材料的前期研究基础,利用吡喃腈红色荧光团与基于苝酰亚胺的糖簇分子,进
nikon-超分辨率显微镜SIM/STORM/TIRF共享
仪器名称:nikon 超分辨率显微镜-SIM/STORM/TIRF仪器编号:A15000008产地:生产厂家:型号:出厂日期:购置日期:所属单位:医研院>生物医学测试中心>尼康影像中心放置地点:医学楼C153固定电话:固定手机:固定email:联系人:尼康助管(62798727,1521051214
超分辨率显微镜的各种不同技术对比
对于传统的光学显微镜,光的衍射让成像分辨率限制在大约250 nm。如今,超分辨率技术可以将此提高10倍以上。这种技术主要通过三种方法实现:单分子定位显微镜,包括光敏定位显微镜(PALM)和随机光学重建显微镜(STORM);结构照明显微镜(SIM);以及受激发射损耗显微镜(STED)。如何选择超分辨率
超分辨率显微镜市场概况和主要品牌
2019年,全球超高分辨率显微镜(super-resolution microscopes,SRM)市场规模为26亿美元,预计从2020年到2027年复合增长率(CAGR)为8.7%。在预测期内推动该市场增长的关键因素包括:在生命科学行业中的应用不断增加、技术进步以及对纳米技术的日益关注。共聚焦和荧
欧盟ChipScope项目:微型超分辨率光学显微镜
想象一下,把显微镜缩小,然后将其与芯片集成在一起,就可以使用它实时观察活细胞内部。如果像今天的智能手机相机一样,可以将这种微型显微镜也集成到电子产品中,那不是很好吗?如果医生设法使用这种工具在偏远地区进行诊断而又不需要大型、笨重和敏感的分析设备,该怎么办?欧盟资助的ChipScope项目在实现这些目
超分辨率显微镜发展历程和技术原理
超分辨率显微镜发展历程 毫无疑问,自16世纪以来,光学显微镜已经历漫长的旅程。首次被知晓的复合显微镜是由Zacharias和Hans Janssen构造的。尽管这些显微镜没有保存下来,但人们确信这些显微镜已能够将放大倍率从3倍提高到9倍。17世纪末期,Leeuwenhoek首次将放大倍率和分辨率提高
超分辨率显微镜的各种不同技术对比
对于传统的光学显微镜,光的衍射让成像分辨率限制在大约250 nm。如今,超分辨率技术可以将此提高10倍以上。这种技术主要通过三种方法实现:单分子定位显微镜,包括光敏定位显微镜(PALM)和随机光学重建显微镜(STORM);结构照明显微镜(SIM);以及受激发射损耗显微镜(STED)。
超分辨荧光显微镜和普通荧光显微镜的区别
两者在工作原理及应用方面存在不同。分述如下: 一、荧光显微镜 1、荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光
超分辨光学显微成像技术的新进展
从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得