光学显微镜之荧光观察

荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过程中电子损失一些能量②。电子离开激发态(S1)并回到基态的过程中③,会释放出激发过程中吸收的剩余能量。荧光雅布伦斯基图荧光分子在激发态驻留的时间为荧光寿命,一般为纳秒级别,是荧光分子本身固有的特性。利用荧光寿命进行成像的技术叫荧光寿命成像(Fluorescence Lifetime Imaging,FLIM),可以在荧光强度成像之外,更加深入地进行功能性测量,获取分子构象、分子间相互作用、分子所处微环境等常规光学成像难以获得的信息。荧光的另一个重要特性是Stokes位移,即激发峰和发射峰之间的波长差异(图2)。通常发射光波长比......阅读全文

光学显微镜之荧光观察

荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过

光学显微镜的主要观察方法之荧光观察

荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过

光学显微镜的观察范围

又称为超微结构。指在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构。(普通光学显微镜的分辨力极限约为0.2微米,细胞膜、内质网膜和核膜的厚度,核糖体、微体、微管和微丝的直径等均小于0.2微米,因而用普通光学显微镜观察不到这些细胞结构,要观察细胞中的各种亚显微结构,必须用分辨力更高的电子显微镜。

荧光显微镜所观察的荧光图象

荧光显微镜所观察的荧光图象,主要以两个指标:刘断结果,一是形态学特征,二是荧光的亮度。在免疫焚光工作巾,尤其是这样,必须将两者结合起来综合判断不可偏皮。纠果记录是根据主观指标或客观指标,但一般常是凭工作者日力观察的主观指标由于这是定性的观察,所以记录的精确度较差。随着科学技术的发展,采用客观指标记录

植物细胞骨架的光学显微镜观察

一、实验目的了解细胞骨架的结构特征及其制备技术。二、实验原理细胞骨架(cytoskeleton)是由蛋白质丝组成的复杂网状结构,根据其组成成分和形态结构可分为微管、微丝和中间纤维。它们对细胞形态的维持,细胞的生长、运动、分裂、分化,物质运输,能量转换,信息传递,基因表达等起到重要作用。当用适当浓度的

荧光显微镜的光学元件

荧光显微镜的光学元件,大都果用普通光学玻璃制造。它们对30 A以上的长波紫外线和可见光能很好地透过,因此完全能满足——殷荧光显微术的要求,只是在个别情况下,当标本必须用短波紫外线激发时,才需用石英玻璃或特种玻璃的聚光镜和反射执这时残破片也必须是特制晰但在进射光显檄术时,物镜和目镜只需用普通光学玻璃即

荧光显微镜观察肿瘤细胞凋亡

荧光显微镜(Fluorescence microscope) : 荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一

荧光显微镜观察肿瘤细胞凋亡

荧光显微镜(Fluorescence microscope) : 荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。多用于:(1)研究细胞内物质的吸收、运输、化学物质的分布及定位等。(2)有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体

荧光显微镜观察肿瘤细胞凋亡

荧光显微镜(Fluorescence microscope) : 荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一

荧光显微镜观察肿瘤细胞凋亡

荧光显微镜(Fluorescence microscope) : 荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发

光学显微镜观察较厚样品不再是难题

随着对较厚样品光学成像能力的增强,使用光学成像技术来观察活体内的生物过程正逐渐成为可能。 生物体都是三维结构的,即使活体状态下的细胞也很少会像它们在培养皿中那样呈现出单独的单层状态。不过,在进行活体研究时历来就存在技术困难,尤其是在活体成像技术方面更是没有什么突破。 生物组织大部分都是不透光的,

动物细胞微丝束的光学显微镜观察

动物细胞微丝束的光学显微镜观察 细胞骨架(cytoskeleton)是指真核细胞胞质中错综复杂的纤维状网络结构,主要包括微管(microtubule,MT,20~25 nm)和纤丝(filament)两大类;另外,胞质中还散布着一些3~6 nm的细小纤维。按纤维的直径、组成成分以及组装结构的不同,纤

光学显微镜下能观察到何种结构

光学显微镜下只能看到细胞显微结构,如细胞核、细胞质(液)、细胞膜(壁),电子显微镜下才能看到细胞亚显微结构,如细胞质中的各种细胞器(线粒体、叶绿体、质体、中心体、高尔基体、核糖体),细胞的各种膜结构,细胞核结构等等.

光学显微镜观察镜检几种方式介绍

 在光学显微镜的发展过程中,相差镜检术的发明成功,是近代显微镜技术中的重要成就.我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本.  相差显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将

免疫荧光技术之荧光显微镜检查方法

1、荧光显微镜荧光显微镜是免疫荧光组织化学的基本工具,分透谢和落射二种类型,落射光无需镜内操作,方便、效果更好。它是由超高压光源、滤板系统(包括激发和压制滤板)和光学系统等主要部件组成。是利用一定波长的光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的荧光图像。 本文来自检验地带网2、荧光显微镜

荧光显微镜与光学显微镜的区别

荧光显微镜和普通显微镜有以下的区别:1.照明方式通常为落射式,即光源通过物镜投射于样品上;2.光源为紫外光,波长较短,分辨力高于普通显微镜;3.有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人目。荧光显微镜也是光学显微镜的一种,主要的区别是二者的激发波长不同。由

荧光显微镜与光学显微镜的区别

荧光显微镜与光学显微镜的区别荧光显微镜和普通显微镜有以下的区别:1.照明方式通常为落射式,即光源通过物镜投射于样品上;2.光源为紫外光,波长较短,分辨力高于普通显微镜;3.有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人目。荧光显微镜也是光学显微镜的一种,主要的

荧光显微镜与光学显微镜的异同

荧光显微镜是光学显微镜中的一种荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染

荧光显微镜与光学显微镜的异同

荧光显微镜是光学显微镜中的一种荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染

荧光显微镜与光学显微镜的区别

荧光显微镜与光学显微镜的区别荧光显微镜和普通显微镜有以下的区别:1.照明方式通常为落射式,即光源通过物镜投射于样品上;2.光源为紫外光,波长较短,分辨力高于普通显微镜;3.有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人目。荧光显微镜也是光学显微镜的一种,主要的

荧光显微镜与光学显微镜的区别

荧光显微镜与光学显微镜的区别荧光显微镜和普通显微镜有以下的区别:1.照明方式通常为落射式,即光源通过物镜投射于样品上;2.光源为紫外光,波长较短,分辨力高于普通显微镜;3.有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人目。荧光显微镜也是光学显微镜的一种,主要的

荧光显微镜与光学显微镜的区别

  1.照明方式通常为落射式,即光源通过物镜投射于样品上;  2.光源为紫外光,波长较短,分辨力高于普通显微镜;  3.有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人目。  荧光显微镜也是光学显微镜的一种,主要的区别是二者的激发波长不同。由此决定了荧光显微镜与

荧光显微镜与光学显微镜的区别

荧光显微镜和普通显微镜有以下的区别:1.照明方式通常为落射式,即光源通过物镜投射于样品上;2.光源为紫外光,波长较短,分辨力高于普通显微镜;3.有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人目。荧光显微镜也是光学显微镜的一种,主要的区别是二者的激发波长不同。由

光学显微镜维护之雾的产生和去除

雾的产生的因素也比较多,雾可分为油性雾、水性雾和油水混合雾。它的形成与仪器结构、密封性能、玻璃的化学稳定性、温度、湿度、油脂的稳定性、辅助材料的含脂至均有关,特别是与装配操作中有关。水性雾的形成(1)玻璃没擦千净或辅助材料不清洁,时间一长,遇有潮湿空气,便会沿擦拭方向痕迹形成象用湿毛巾揩桌子一样的雾

光学显微镜的使用及示教片的观察

一、实验目的 1. 学习并掌握油镜的原理和使用方法。 2. 复习普通台式显微镜的结构、各部分的功能和使用方法。 二、显微镜的基本结构及油镜的工作原理 现代普通光学显微镜利用目镜和物镜两组透镜系统来放大成像,故又常 被称为复式显微镜。它们由机械装置和光学系统两大部分组成。在显微镜的光学系统中,物镜

光学显微镜可以观察到分子结构吗

光学显微镜可以观察到分子结构吗?   在光学显微镜下能不能观察到分子?   水分子可以通过光学显微镜观察到吗?   显微镜可以观察到蛋白质分子吗?   可以观察到分子结构的是电子显微镜,现在电子显微镜的放大倍数能够达到1500万倍。   在20世纪70年代的时候,透射式电子显微镜是当前较流行的一种显

光学显微镜可以观察到分子结构吗

光学显微镜可以观察到分子结构吗?在光学显微镜下能不能观察到分子?水分子可以通过光学显微镜观察到吗?显微镜可以观察到蛋白质分子吗?可以观察到分子结构的是电子显微镜,现在电子显微镜的放大倍数能够达到1500万倍。在20世纪70年代的时候,透射式电子显微镜是当前zui流行的一种显微镜,它的分辨率约为0.3

光学显微镜可以观察到分子结构吗

     在光学显微镜下能不能观察到分子?     水分子可以通过光学显微镜观察到吗?  显微镜可以观察到蛋白质分子吗?  可以观察到分子结构的是电子显微镜,现在电子显微镜的放大倍数能够达到1500万倍。  在20世纪70年代的时候,透射式电子显微镜是当前较流行的一种显微镜,它的分辨率约为0.3纳米

用光学显微镜观察染色体要用什么染色

光学显微镜观察染色体可以用龙胆紫溶液或醋酸洋红溶液等碱性染色剂进行染色。解析:染色体之所以叫染色体,就是易被碱性染料染成深色,高中生物学中曾经学过,实验中观察染色体须使用龙胆紫溶液或醋酸洋红溶液进行染色:龙胆紫俗称紫药水,是一种外用药,其阳离子能与细菌蛋白质羧基结合,影响其代谢而产生抑菌作用。洋红是

光学显微镜观察聚合物的结晶形态

偏光显微镜的构造及原理,偏光显微镜的使用方法。用熔融法制备聚合物球晶,观察不同结晶温度下得到的球晶的形态,测量聚合物球晶的半径。晶体和无定形体是聚合物聚集态的两种基本形式,很多聚合物都能结晶。结晶聚合物材料的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的。