捕光聚合物材料在人工调控加速植物光合状态转换的...1
捕光聚合物材料在人工调控加速植物光合状态转换的使用INTRODUCTION人工调节PSI与PSII之间的状态转换,将是提高自然光合效率的一种巧妙和**前景的方法。在本研究中,作者发现一种合成的捕光聚合物[poly(boron-dipyrromethene-co-fluorene) (PBF)],该物质具有吸收绿光和发射远红光的特性,可以提高小球藻(Chlorella pyrenoidosa)的PSI活性,进而进一步提高PSII活性以增强自然光合。在光反应中,PBF促进了光合电子传递速率120%,氧气合成97%、ATP和NADPH的生成76%。对于暗反应,RuBisCO活性提高了1.5倍,而编码RuBisCO的rbcL和编码磷酸核酮糖激酶的prk的表达水平分别上调了2.6倍和1.5倍。此外,拟南芥可吸收PBF,加速细胞有丝分裂,增强光合作用。通过提高自然光合的效率,合成集光聚合物材料在生物燃料生产中显示出了广阔的应用前景。PB......阅读全文
捕光聚合物材料在人工调控加速植物光合状态转换的...1
捕光聚合物材料在人工调控加速植物光合状态转换的使用INTRODUCTION人工调节PSI与PSII之间的状态转换,将是提高自然光合效率的一种巧妙和**前景的方法。在本研究中,作者发现一种合成的捕光聚合物[poly(boron-dipyrromethene-co-fluorene) (PBF)],
捕光聚合物材料在人工调控加速植物光合状态转换的使用
INTRODUCTION人工调节PSI与PSII之间的状态转换,将是提高自然光合效率的一种巧妙和**前景的方法。在本研究中,作者发现一种合成的捕光聚合物[poly(boron-dipyrromethene-co-fluorene) (PBF)],该物质具有吸收绿光和发射远红光的特性,可以提高小球
捕光聚合物材料在人工调控加速植物光合状态转换的...2
State transition regulation PBF synergistical improvement of PSI and PSII activity 如上图在正常光照条件下,小球藻的捕光色素复合体LHC趋向处于一种向PSII和PSI均衡功能的中间态。PBF作为一种远红光发射材料,可
高分辨率冷冻电镜首次解析超级复合物结构
在国家重点研发计划“蛋白质机器与生命过程调控”重点专项的支持下,“光合作用重要蛋白质机器的结构、功能与调控”和“蛋白质机器的高分辨率冷冻电镜前沿技术及应用”项目联合攻关,取得突破进展,发现了植物的光适应与捕光调节新机制。图片源自网络 光合作用为世界上几乎所有的生命体提供赖以生存的物质和能量,
解析绿藻光合状态转换超分子复合体的三维结构
光合作用作为重要的物质和能量转化过程,是地球上几乎所有生命赖以生存和发展的基础。光合作用状态转换是光合膜在光环境变化条件下调节激发能在光系统I(PSI)和光系统II(PSII)间均衡分配的一种快速适应机制,通过PSII主要捕光天线(LHCII)在PSII和PSI之间的迁移和可逆结合,改变两个光系
李灿:高效光电催化全分解水,制氢效率达4.3%
近日,中国科学院院士、中科院大连化学物理研究所催化基础国家重点实验室、太阳能研究部研究员李灿团队在光电催化分解水制氢方面取得新进展,团队受自然光合作用Z机制的启发,实现了高效光电催化全分解水过程,该过程的分解水制氢效率达4.3%,是目前文献报道的最高效率。 前期,李灿团队通过模拟自然光系统II
研究发现植物光合作用中高效捕光的超分子机器结构
8月25日,《科学》杂志发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组与柳振峰研究组的最新合作研究成果。该项工作报道了豌豆光系统II-捕光复合物II超级复合物的高分辨率电镜结构,揭示了植物在弱光条件下进行高效捕光的超分子基础。 光合作用是地球上最为重要的化学反应之一。植物、藻类
生物物理所揭示光合作用状态转换机制
4月17日,Plant Cell 期刊在线发表了中国科学院生物物理研究所柳振峰课题组关于植物光合作用状态转换磷酸酶(TAP38/PPH1)底物识别机制的研究成果,题为Structural Mechanism Underlying the Specific Recognition between
研究揭示植物的光适应与捕光调节机制
6月8日,《科学》(Science)期刊发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组的合作研究成果,题为Structure of the maize photosystem I supercomplex with light-harvesting complexes I and
我国揭示植物适应多变光照条件光系统的捕光调节机制
近日,Science期刊发表了题为“Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II”。该项工作首次报道了玉米光系统I-捕光复合物I-捕光复合物II(PSI-LHC
中国科学家破解光合作用最重要“超分子机器”
植物光合作用的最初光能吸收和转换的过程由三个复合体协同完成,科学家称之为“超分子机器”。其中,“光系统II”位于最上游,极其重要,其结构解析的难度非常大。 5月20日,中国科学院生物物理研究所在北京召开新闻发布会宣布,该所柳振峰研究组、章新政研究组与常文瑞-李梅研究组通力合作,首次解析了菠菜光
我国科学家在藻类捕光天线蛋白领域取得新进展
硅藻贡献了地球上每年原初生产力的20%左右,这都与其光系统II(PhotosystemII,PSII)以及外周捕光天线的功能密切相关。硅藻PSII的外周捕光天线结合了岩藻黄素和叶绿素a/c的蛋白(FucoxanthinChl a/c binding proteins,FCPs),具有强大的蓝绿光
我国学者揭示硅藻FCP晶体结构及结构基础
硅藻是海洋中最“成功”的浮游光合生物之一,它们通过光合作用贡献了地球上每年约20%的有机物生产力,相当于固定了近五分之一的二氧化碳,高于全球所有热带雨林的贡献,这与硅藻特有的捕光天线蛋白“岩藻黄素-叶绿素a/c蛋白复合体”(Fucoxanthin chlorophyll a/c protein,
在失重状态对植物生长的影响
根的向地生长和茎的背地生长是要有地球引力诱导的,是由于在地球引力的诱导下导致生长素分布不均匀造成的。在太空失重状态下,由于失去了重力作用,所以茎的生长也就失去了背地性,根也失去了向地生长的特性。但茎生长的顶端优势仍然是存在的,生长素的极性运输不受重力影响。
金属有机框架材料可提高光合作用固碳效率
在自然光合作用中,植物利用太阳光、水、二氧化碳合成生物质。但是,植物的光合作用效率主要受到光照质量和二氧化碳捕集与传输方面因素的限制,制约了光合作用合成生物质的效率。近日,中国科学院大连化学物理研究所李灿院士、副研究员王旺银等在提高微藻光合作用固碳方面取得了新进展。团队发现利用金属有机框架材料(
植物光系统I膜蛋白超分子复合物结构研究获重要进展
5月29日,Science期刊以长文(Article)的形式并作为封面文章发表了中国科学院植物研究所沈建仁和匡廷云研究团队的突破性研究成果——高等植物光系统I(PSI)光合膜蛋白超分子复合物2.8 Å的世界最高分辨率晶体结构,文章题为Structural basis for energy tra
我所发现微藻表面组装金属有机框架材料可提高光合作用固碳效率
原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202309/t20230908_6876774.html 近日,我所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士、王旺银副研究员等在提高微藻光合作用固碳方面取得新进展,发现利用金属有机框架材料(MOFs)直
Qbics计算揭示光合作用中的量子开关机制
光合作用是植物利用太阳能将二氧化碳转化为有机物质的重要过程。最近,通过Qbics软件多态密度泛函理论计算和冷冻电镜实验的研究揭示了光合作用中一个重要的量子开关机制。该研究发现,植物光合体系的捕光天线通过其构象的变化调控激发态能量转移量子通道,实现光能捕捉与能量耗散之间的灵活切换。这一机制能在极短
金属有机框架材料可提高光合作用固碳效率
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508303.shtm在自然光合作用中,植物利用太阳光、水、二氧化碳合成生物质。但是,植物的光合作用效率主要受到光照质量和二氧化碳捕集与传输方面因素的限制,制约了光合作用合成生物质的效率。近日,中国科学院大
TPS-1植物光合系统测定实验
实验方法原理TPS是一个可以同时测定植物叶片光合速率和呼吸速率及蒸腾速率的开放式气路系统。测定时,把叶片放在一个带有可照光的密闭叶室中(若测定呼吸不需照光),然后仪器自动检测经过叶室的气体流量、进入叶室气体中的CO2和H2O浓度和流出叶室气体中的CO2和H2O浓度,便可自动计算,并给出植物叶片的光合
TPS-1植物光合系统测定实验
实验方法原理:TPS是一个可以同时测定植物叶片光合速率和呼吸速率及蒸腾速率的开放式气路系统。测定时,把叶片放在一个带有可照光的密闭叶室中(若测定呼吸不需照光),然后仪器自动检测经过叶室的气体流量、进入叶室气体中的CO2和H2O浓度和流出叶室气体中的CO2和H2O浓度,便可自动计算,并给出植物叶片的光
TPS-1植物光合系统测定实验
实验方法原理 TPS是一个可以同时测定植物叶片光合速率和呼吸速率及蒸腾速率的开放式气路系统。测定时,把叶片放在一个带有可照光的密闭叶室中(若测定呼吸不需照光),然后仪器自动检测经过叶室的气体流量、进入叶室气体中的CO2和H2O浓度和流出叶室气体中的CO2和H2O浓度,便可自动计算,并给出植物叶片的光
这个团队在光合作用捕光复合物研究中取得进展!
经过我们公众号iPlants的查阅,发现以中国科学院生物物理所常文瑞院士为学术带头人,柳振峰研究组、章新政研究组与常文瑞/李梅研究组合作的团队已经在光合作用的捕光复合物研究中取得一系列重大的进展,实属了不起!其中包括以下成果: 1.2004年3月18日,Nature以封面彩图的形式发表来自中国
菠萝中找到调控植物光合作用“开关”
福建农林大学3日在此间发布,11月2日,国际权威学术刊物《自然·遗传学》在线发表了该校明瑞光教授团队的研究成果“菠萝基因组与景天酸代谢光合作用的演化”。该项研究在全世界首次破译菠萝基因组的基础上,首次阐明了菠萝中的景天酸光合作用基因是通过改变调控序列演化而来,并且受昼夜节律基因的调控,从而找到景
远红光在波动光的弱光阶段加速光合作用
2019年10月16日,Plant and CellPhysiology杂志在线发表日本东京大学理学院生物科学系Masaru Kono的最新研究成果文章:远红光在波动光的弱光阶段加速光合作用(Far-Red Light Accelerates Photosynthesis in the Low-Li
长光所上转换纳米光开关实现癌症诊断和治疗精准调控
光开关材料(Photoswitchable materials)在高密度光学数据存储、光电器件、化学传感以及生物医学等新兴领域有着重要的应用前景。稀土掺杂的上转换发光纳米晶,因其具有近红外窄谱带激发,宽能域多谱带上转换发射和高的光稳定性等特点,被认为是性能优异的光转换功能材料。通过掺杂与结构调控
植物所2项成果入选2015年中国生命科学领域十大进展
1月24日,中国科协生命科学学会联合体组织18个成员学会推荐,经生命科学领域同行专家评审及联合体主席团评选和审核,公布了2015年度“中国生命科学领域十大进展”。中国科学院植物研究所种康研究团队的“发现水稻低温QTL基因编码蛋白COLD1感受与防御寒害机制”、匡廷云和沈建仁研究团队的“解析高等植
光合细菌分子自组装捕光天线相干激子态传能机制研究
顾城给世人留下了著名诗句“黑夜给了我黑色的眼睛,我却用它来寻找光明”。把这句话用在古老的光合细菌绿硫菌身上也十分妥帖。人眼对可见光的响应达到单光子量级,而依靠光合作用为生的绿硫菌其生存环境比我们所经历过的任何黑夜还要暗淡。可以想象它们的捕光天线系统也应该十分发达,传能机制也会更为奇特。绿硫菌捕光
植物所高等植物光合作用捕光色素蛋白转运分子机制研究
LTD蛋白特异性识别并转运捕光色素蛋白的模式图 高等植物叶绿体是进行光合作用的细胞器。叶绿体有2500-3000个蛋白,95%以上的蛋白是由核基因编码的。核基因编码的叶绿体蛋白首先在细胞质中合成,并通过叶绿体内外被膜和类囊体膜转运通道运输到叶绿体内,从而行使功能。但是一些关键的参与光
植物所在植物光形态建成转录调控方面取得进展
转录调控是生物体内由转录因子和其他调节蛋白协同或拮抗调控基因表达的重要生化机制。光信号是高等植物早期生长发育中光形态建成的决定性因素,其信号通路中光敏色素互作因子PIF为负向调控因子,HY5为正向调控因子。PIF和HY5分别是bHLH型和bZIP型转录因子,在植物生长发育及环境响应中具有广泛的功