解析绿藻光合状态转换超分子复合体的三维结构

光合作用作为重要的物质和能量转化过程,是地球上几乎所有生命赖以生存和发展的基础。光合作用状态转换是光合膜在光环境变化条件下调节激发能在光系统I(PSI)和光系统II(PSII)间均衡分配的一种快速适应机制,通过PSII主要捕光天线(LHCII)在PSII和PSI之间的迁移和可逆结合,改变两个光系统的捕光截面大小,进而实现激发能均衡分配。探索光合作用状态转换机制对理解光合膜动态调控具有理论和实践意义。 绿藻生长在光强不断变化的水环境条件下,具有较强的状态转换功能。目前,在原子、分子水平上揭示绿藻状态转换超分子复合体的精确结构及组装机制存在挑战。中国科学院植物研究所光合膜蛋白结构生物学研究团队与浙江大学教授张兴团队合作,首次解析了绿藻(莱茵衣藻,Chlamydomonas reinhardtii)光合作用状态转换超分子色素蛋白复合体的冷冻电镜三维结构(3.42埃),揭示了复合体中蛋白亚基的组成、捕光天线的结构特点、色素分布及其......阅读全文

绿藻球怎么养绿藻球的生活环境

  绿藻球能适应广泛的水质、光度及温度变化,不追加肥料、不添加二氧化碳也可育成,具体的养殖 方法 有哪些呢?以下是由我整理关于绿藻球怎么养的内容,希望大家喜欢!  绿藻球的养殖方法  1.绿藻球为绿藻类中的淡水藻品种,可以用洁净的自来水养殖,大约一个星期左右更换一次清水,水温一定要保持25摄氏度一下

绿藻门、轮藻门、红藻门、褐藻门鉴定——绿藻门鉴定

实验方法原理实验材料绿藻试剂、试剂盒I-Kl 溶液浓 KOH 溶液0.1%亚甲基蓝溶液2%-3%盐酸(或乙酸)溶液仪器、耗材显微镜摄子解剖针载玻片盖玻片滴管培养皿吸水纸实验步骤绿藻门 Chlorophyta( 图 2-19-1)绿藻门是藻类植物中种类最多的一大类群,分布极广,以淡水最多。其所含色素、

二选一还是二合一?地衣共生藻研究获新发现

地衣是真菌和藻类互惠共生而组成的复合体,它的共生藻主要分为绿藻和蓝藻两大类,通常地衣只选择其中一类进行共生,即蓝藻型地衣或者绿藻型地衣。其中,蓝藻需要有液态水才能进行光合作用,而绿藻则可以在没有液态水的条件下通过气态水进行光合作用。近日,中国科学院昆明植物研究所研究人员在对青藏高原肺衣属的研究中发现

PNAS:绿藻中的抗癌药物

  加州大学圣迭戈分校的生物学家成功对绿藻进行了基因工程改造,使其能够大量生产一种复杂而昂贵的癌症治疗药物。这项研究开辟了低成本大量合成复杂蛋白药物的新途径,文章提前发表在美国国家科学院院刊PNAS杂志的网站上。   “这种抗癌药物的生产一般使用哺乳动物细胞,而我们能够在绿藻中生产完全一样的药物,

绿藻怎么培养出来的

在家中用鱼缸养鱼的时候,可能有的人想要培养出绿藻,要先确定好绿藻的特性。绿藻的生长需要充足的阳光和适宜的生长环境,可将鱼缸放在光线充足的地方,多晒太阳能促使绿藻长出,加入少量的液肥,还要提供氧气充足的环境,这样经过一段时间后,绿藻就能长出来了。不过需要注意的是,绿藻并不是越多越好,当绿藻过多的时候,

Nature子刊改写教科书,植物也能吃植物

  植物的生长需要阳光和水分,小孩子都知道植物通过阳光土壤和水获取养分。日前Bielefeld大学Olaf Kruse教授的研究团队首次发现,绿藻Chlamydomonas reinhardtii不仅从事光合作用,还能够从其他植物获取能量,该发现颠覆了我们自小学习的教科书理论,有望对开发生物

三重共生体系研究取得进展

  在现有的生态系统中,异养生物和光合藻类之间的共生关系广泛且具有重要的生态意义。许多真核生物因此成为混合营养生物,即它们通过从藻类中获取藻类内共生菌或叶绿体,将捕食和光合作用结合起来。光合自养内共生体通常将光合产物(如糖、有机酸和氧气)释放到宿主体内,而宿主则提供营养丰富的环境(如氮和矿物质)以及

PNAS:可让人变笨的绿藻病毒

  一般来讲,病毒有特定的宿主,植物病毒很少能在动物细胞中存活,细菌病毒也无法生活在动物和植物,但也有意外的情况。最近这一发现就是一种常见绿藻病毒竟然可以感染人和动物,并能导致人类大脑功能下降。禽流感能感染人类就完全不是个事了,或者爱博拉、爱滋病这样的病毒原本就是非人类特异性病毒,只是进化给它们了特

解析绿藻光合状态转换超分子复合体的三维结构

  光合作用作为重要的物质和能量转化过程,是地球上几乎所有生命赖以生存和发展的基础。光合作用状态转换是光合膜在光环境变化条件下调节激发能在光系统I(PSI)和光系统II(PSII)间均衡分配的一种快速适应机制,通过PSII主要捕光天线(LHCII)在PSII和PSI之间的迁移和可逆结合,改变两个光系

绿藻门I(Chlorophyta)结构与功能观察实验

一.目的要求     本门植物种类繁多,体形多样,分布极广,是植物界进化的主干,也是教学和实验的重点,为此安排两次实验。通过实验观察要:  1.的代表植物的形态构造、繁殖和生活史。从而掌握本门的征。  2.了解植物界从单细胞到多细胞,从无分化到有分化,从简单到复杂,从无性生殖到有性生殖,从核相

植物系统学实验:绿藻门II(Chlorophyta)

一、目的要求:   本门植物  种类繁多,体形多样,分布极广,是植物界进化的主干,也是教学和实验的重点,为此安排两次实验。通过实验观察要:   1.的代表植物的形态构造、繁殖和生活史。从而掌握本门的征。   2.了解植物界从单细胞到多细胞,从无分化到有分化,从简单到复杂,从无性生殖到有性生殖,从核

研究揭示绿藻类肺衣演化过程

相比于大自然界各种瑰丽明艳的植物,地衣甚至有点丑怪;但地衣早于侏罗纪前已有藻类和真菌的痕迹,实为生物中的 “老大哥”。 绿藻共生的肺衣类是大型叶状地衣的代表之一,食药用历史久远。近日,中国科学院昆明植物研究所研究员王立松联合瑞士联邦研究所的研究团队,揭示绿藻类肺衣这类古老生物在喜马拉雅和横断山的演化

绿藻门II(Chlorophyta)结构与功能观察实验

一、目的要求:    本门植物种类繁多,体形多样,分布极广,是植物界进化的主干,也是教学和实验的重点,为此安排两次实验。通过实验观察要:  1.的代表植物的形态构造、繁殖和生活史。从而掌握本门的征。  2.了解植物界从单细胞到多细胞,从无分化到有分化,从简单到复杂,从无性生殖到有性生殖,从核相

湖泊水库里出现蓝绿藻怎么处理

我们常见湖泊水库或者池塘里总会又一大片绿色的漂浮植物,很多都并不知道是什么原因,其实这和我们生活息息相关,湖泊水库池塘的水质、溶氧量,水质营养等等都非常的重要。既要注意水质营养不良的问题,也要当心湖泊水库池塘水的富营养化。如果池出现了蓝绿藻,我们就要特别注意。蓝藻爆发是判断水体污染的重要指标。蓝藻容

什么是叶绿素

叶绿素,是一类与光合作用有关的最重要的色素。光合作用是通过合成一些有机化合物将光能转变为化学能的过程。叶绿素实际上见于所有能营光合作用的生物体,包括绿色植物、原核的蓝绿藻(蓝菌)和真核的藻类。叶绿素从光中吸收能量,然后能量被用来将二氧化碳转变为碳水化合物。

地衣的结构组成和相互关系

构成地衣的藻类:主要是蓝藻和绿藻。蓝藻主要是念珠藻属,绿藻主要是共球藻属。构成地衣的真菌:大多数是子囊菌,少数是担子菌。构成地衣的真菌在许多生理特性方面都不同于一般真菌,特称为“地衣型真菌”。真菌在地衣体构造上占主要部分。地衣原植体的形态几乎完全是由共生的真菌决定的。藻类分布在地衣植物的内部,形成一

科学家完成古老绿藻基因组测序

  已知最小的真核生物Micromonas之一的电子断层切片( 0.5微米厚)   一个国际研究小组日前对两株被认为属于同一种藻类的古老绿藻进行了基因组测序,结果发现二者的基因只有90%相同。由于研究所用的绿藻位于真核生物生命树底部,科学家认为,这一发现为研究藻类以及陆地植物的进化提供了新线索

绿藻竟然利用这种超分子实现光捕获

  11月25日,国际学术期刊《自然-植物》(Nature Plants)在线发表了题为Structural insight into light harvesting for photosystem II in green algae 的论文,该项工作由中国科学院生物物理研究所柳振峰课题组和日本国

新研究揭示绿藻类肺衣演化“前世今生”

  与绿藻共生的肺衣类,是大型叶状地衣的代表,有悠久的食药用历史,但弄清其物种划分和系统演化过程的问题却并不容易。18日,记者从中国科学院昆明植物研究所获悉,该所王立松研究员与相关研究团队合作,首次较为清晰地揭示了绿藻类肺衣在喜马拉雅及横断山的演化过程。  与大自然各种争奇斗艳的植物相比,作为菌藻群

海洋中真核浮游植物的固碳能力不可小觑

  海洋中浮游植物的固碳能力在全球碳循环中起着关键作用,但却未被科学家充分了解。最近英国科学家研究表明,真核浮游植物的固碳能力可和众所周知的蓝绿藻类原核生物相媲美,其固碳总量接近海洋浮游植物固碳总量的一半。  过去一直认为,在大部分海洋表面透光区都可见的蓝绿藻主宰着海洋的固碳领域,其固碳能力在海洋浮

科学家发现能进行光合作用的动物

  据国外媒体报道,目前,科学家发现一种亮绿色海蛞蝓能够盗取所吞食海藻中的基因,使自己具有“光合作用”功能,像植物一样从太阳光线中获得能量。  它叫做“绿叶海蛞蝓”,能够将海藻中的基因合并入自己的染色体中,使其能够进行光合作用。在这一过程中,绿叶海蛞蝓可以进行光合作用,使用太阳能量将二氧化碳和水转变

绿藻门、轮藻门、红藻门、褐藻门鉴定

实验方法原理:实验材料:绿藻试剂、试剂盒:I-Kl 溶液                                                                  浓 KOH 溶液                                                

水中叶绿素与水中蓝绿藻检测仪器

便携式水中叶绿素分析仪产品简介:便携式叶绿素分析仪由便携式主机以及便携式叶绿素传感器组成。叶绿素传感器是利用叶绿色素在光谱中有吸收峰和发射峰这一特性,在叶绿素的光谱吸收峰发射单色光照射到水中,水中的叶绿素吸收单色光的能量,释放出另外一种波长发射峰的单色光,叶绿素发射的光强与水中叶绿素的含量成正比。便

水生所能源微藻油脂代谢机制研究取得系列进展

  能源是人类社会可持续发展所面临的重要问题之一。微藻通过光合作用积累生物量和油脂,可用于生产新型清洁能源,是第三代生物燃料的基础。中国科学院水生生物研究所研究员王强学科组从2011年起与中国石化石油化工科学研究院22室主任荣峻峰合作,开展了“微藻生物能源”及“能源微藻油脂代谢及能量信号调控机制”的

概述地衣多糖的一般特征

  地衣是藻类和真菌组合在一起共生的复合有机体,是没有根茎叶分化,结构简单的、多年生的原植体植  物。由于藻类和菌类之间长期紧密地结合在一起而成为1个单独的固定有机体类群。使其既没于一般真菌,也不同于一般藻类。而具有独特的形态、结构、生理和遗传等特征。它们是植物多年发展演化的结果。因此,把地衣当作一

水中叶绿素蓝绿藻测试原理及标液配置方法供参考!

  荧光法叶绿素传感器测试原理:   叶绿素是一种重要的生物化学分子,是光合作用的基础,利用太阳能产生氧气。通常可以用收集水样中叶绿素的量来计算悬浮的浮游植物的浓度。   中叶绿素传感器是利用叶绿素A在光谱中有吸收峰和发射峰这一特性,发射特定波长的单色光照射到水中,水中的叶绿素A吸收该单色光的能

叶绿素是什么

叶绿素是一类与光合作用(photosynthesis)有关的最重要的色素。光合作用是通过合成一些有机化合物将光能转变为化学能的过程。叶绿素实际上存在于所有能营造光合作用的生物体,包括绿色植物、原核的蓝绿藻(蓝菌)和真核的藻类。叶绿素从光中吸收能量,然后能量被用来将二氧化碳转变为碳水化合物。中文名称:

藻类水下光合作用的蛋白结构和功能破解了

  光合作用为生物的生存提供了能量和氧气,为利用不同环境下的光能,光合生物进化出了不同的色素分子和色素结合蛋白。硅藻是一种丰富和重要的水生光合真核生物,占地球总原初生产力的20%。硅藻含有岩藻黄素/叶绿素结合膜蛋白(FCPs),该色素蛋白使硅藻具有独特的光捕获和光保护及快速适应光强度变化的能力。  

假根羽藻重要光合膜蛋白超级复合物结构获解析

   日前,中国科学院院士、中科院植物研究所研究员匡廷云、研究员沈建仁带领的团队同济南大学、清华大学的科研人员合作,揭示了假根羽藻一个重要的光合膜蛋白超级复合物——光系统I捕光复合物I(PSI-LHCI)的3.49Å分辨率结构。该研究进一步完善了对光合生物进化过程中光系统结构变化趋势的理解,为人工模

日研究发现绿藻也可以自我调节生物钟

  绿藻是海水和淡水中的常见藻类,成员种类繁多,在生物燃料方面具有很强的应用前景。日本研究人员发现,一种绿藻“衣藻”不仅有生物钟基因,而且还能对生物钟的紊乱进行自我修复。   几乎所有的绿藻都拥有叶绿体,使它们呈现亮绿色。名古屋大学名誉教授石浦正宽等人将衣藻的生物钟基因与萤火虫的发光基因相融合,使