每日一学:x射线荧光光谱仪工作原理

多道X射线荧光光谱仪MXF-2400是升级型的多道型X射线荧光光谱仪。MXF-2400采用根据X射线荧光分析原理新设计的硬件以及配备丰富软件数据处理装置,全自动进行分析数据的管理,可同时分析36种元素,再加上单道扫描型分光器可同时处理48种元素,实现了传统X射线荧光装置难以做到的数ppm级的高灵敏度、高精度分析。 X射线荧光光谱仪的工作原理 原子受高能射线激发发射出特征X射线光谱线,每一元素都有它自己本身的固定波长的特征谱线,测定X射线荧光光谱线的波长,就可知道是何种元素。 测定某一元素分析谱线的强度并与标准样品的同一谱线强度对比或根据一些基本参数的理论计算,即可知道该元素的含量。......阅读全文

每日一学:x射线荧光光谱仪工作原理

 多道X射线荧光光谱仪MXF-2400是升级型的多道型X射线荧光光谱仪。MXF-2400采用根据X射线荧光分析原理新设计的硬件以及配备丰富软件数据处理装置,全自动进行分析数据的管理,可同时分析36种元素,再加上单道扫描型分光器可同时处理48种元素,实现了传统X射线荧光装置难以做到的数ppm级的高灵敏

X射线荧光光谱仪工作原理

2.1 X射线荧光的物理原理 X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位nm)描述。 X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足

x射线荧光光谱仪的工作原理

当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到

X射线荧光光谱仪的工作原理

 X射线荧光分析技术作为一种快速分析手段,为我国的相关生产企业提供了一种可行的、低成本的、并且是及时的,检测、筛选和控制有害元素含量的有效途径;相对于其他分析方法。   样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。   X射线荧光光谱仪的工作

X射线荧光光谱仪原理

X射线荧光光谱仪原理       X射线荧光光谱仪主要由激发源(X射线管)和探测系统构成。其原理就是:X射线管通过产生入射X射线(一次X射线),来激发被测样品。 受激发的样品中的每一种元素会放射出二次X射线(又叫X荧光),并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这

X荧光光谱仪的工作原理(一)

X荧光光谱仪(XRF)是一种较新型的可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X荧光光谱仪(WD-XRF)是用晶体分光而后由探测器接收经过衍射的特征X射线信

X射线荧光光谱仪的原理

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪原理分析

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

  X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

能量色散X射线荧光光谱仪的工作原理

  能量色散x射线荧光光谱仪energy-disnersi}e x-ray flu-orexence spectromet。利用脉冲高度分析器进行能量色散的x射线荧光光谱仪公与波长色散x射线荧光光谱仪相比,它的结构简单。可使用小功率x射线管激发和简单的分光系统。采用半导体探测器和多道脉冲高度分析器可

X射线荧光光谱仪中的X射线原理科普

  X射线荧光光谱仪是一种快速的、非破坏式的物质测量方法。x射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应。X射线初用于医学成像诊断和X射线结晶学。X射线也是游离辐射等这一类对人体有危害的

日立X射线荧光光谱仪操作原理

 X射线荧光光谱仪物理原理  当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的

X射线荧光光谱仪的技术原理

X射线荧光光谱仪是利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元

X射线荧光光谱仪的使用原理

采用X射线荧光光谱仪(X-rayFluorescenceSpectrometer,简称:XRF光谱仪)测量,是一种快速的、非破坏式的物质测量方法。X射线荧光(X-rayfluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。 X射线荧光分析被广泛应用于元素和化学分析

X射线荧光光谱仪原理的简介

  X射线荧光分析仪是一种比较新型的可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。  X射线是一种波长较短的电磁辐射,通常是指能量范围在0.1~100 keV的光子。X射线与物质的相互作用主要有荧光、吸收和散射三种。  XRF工作

X射线荧光光谱仪检测分析原理

  X射线荧光光谱分析仪可以对各种样品的元素组成进行定量分析,包括压片、融珠、粉末液体、甚至是庞大的样品。它使用一种高功率X射线管达到了检测限低和测量时间短的效果。具有重现性好,测量速度快,灵敏度高的特点。  X射线荧光光谱分析仪物理原理  当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生

X荧光光谱仪工作原理

荧光光谱仪又称荧光分光光度计,是一种定性、定量分析的仪器。通过荧光光谱仪的检测,可以获得物质的激发光谱、发射光谱、量子产率、荧光强度、荧光寿命、斯托克斯位移、荧光偏振与去偏振特性,以及荧光的淬灭方面的信息。X荧光光谱仪的工作原理: X荧光光谱仪主要由激发源(X射线管)和探测系统构成。其原理就是:X射

X荧光光谱仪工作原理

X荧光光谱仪主要由激发源(X射线管)和探测系统构成。其原理就是:X射线管通过产生入射X射线(一次X射线),来激发被测样品。  受激发的样品中的每一种元素会放射出二次X射线(又叫X荧光),并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量或

X-射线荧光光谱仪

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图

X射线测厚仪的每日维护

  X射线测厚仪的日常维护 ,除了需要遵循一般电气设备的常规维护方法(例如 :电气连接情况、主要电源电压的检查、各个开关的操作是否有效),这里主要讨论针对测厚仪的维护。  X射线测厚仪的每天检查  1)循环水。循环水恒温设备主要给射线源提供相对恒定的温度环境。射线源的温度波动将直接导致射线能量的变化

X射线荧光光谱仪基本原理

  XRF工作原理是X射线光管发出的初级X射线激发样品中的原子,产生特征X射线,通过分析样品中不同元素产生的特征荧光X射线波长(或能量)和强度,可以获得样品中的元素组成与含量信息,达到定性定量分析的目的。  X射线是一种波长较短的电磁辐射,通常是指能量范围在0.1~100 keV的光子。X射线与物质

X射线荧光光谱仪的物理原理简述

X射线荧光光谱仪(X-rayFluorescenceSpectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-rayfluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特别是在金属

X射线荧光光谱仪基本原理

  XRF工作原理是X射线光管发出的初级X射线照射样品,样品中原子的内层电子被激发,当外层电子跃迁时产生特征X射线,通过分析样品中不同元素产生的特征荧光X射线波长(或能量)和强度,可以获得样品中的元素组成与含量信息,达到定性定量分析的目的。  X射线是一种波长较短的电磁辐射,通常是指能量范围在0.1