干涉成像光谱仪的简介

1880年,迈克耳逊(iMhcelson)发明了以他的名字命名的干涉仪。后来瑞利首先认识到干涉仪所产生的干涉图(干涉条纹),可以通过傅里叶变换而得出其光谱,即干涉图与光谱之间存在着一种对应的傅里叶变换的数学运算关系,从而通过傅里叶积分变换的数学运算把干涉图(干涉条纹)与辐射光谱直接联系了起来,这一原理直接导致了干涉光谱技术的产生及其发展。RubenS等人曾在20世纪初采用双光束干涉仪首次实现了干涉图的准确实验测量,他们还根据假定的光谱分布计算了干涉图并和实验测得的光谱图进行了比较。20世纪50年代之后,随着傅里叶变换光谱学的飞速发展,英国的PeterFellgett于1949年第一次真正的从干涉图进行傅里叶积分变换数学计算获得了光谱图。干涉成像光谱技术的另一个重大发展和决定性的突破发生在20世纪60年代中期,随着Cooley发明的快速傅里叶变换FFT算法的采用,大大较少了常规傅里叶变换的运算量,极大的提高了运算效率,几分钟即......阅读全文

干涉成像光谱仪的简介

  1880年,迈克耳逊(iMhcelson)发明了以他的名字命名的干涉仪。后来瑞利首先认识到干涉仪所产生的干涉图(干涉条纹),可以通过傅里叶变换而得出其光谱,即干涉图与光谱之间存在着一种对应的傅里叶变换的数学运算关系,从而通过傅里叶积分变换的数学运算把干涉图(干涉条纹)与辐射光谱直接联系了起来,这

干涉成像光谱仪的应用

  最初成像光谱仪的发展,主要是用于植被遥感和地质矿物识别研究之用(Goetz等,1985)。但是随着成像光谱技术的深入研究,它己被广泛应用在大气科学、生态、地质、水文和海洋等学科中(Vanes&Goetz,1993)。  它在军事和民用领域,都有广泛的应用前景。在军事上,与可见光照相侦察技术相比,

干涉成像光谱仪的概述

  干涉成像光谱仪是利用干涉原理获得一系列随光程差变化的干涉图样,通过反演可以得到目标物体的二维空间图像和一维光谱信息的仪器。干涉成像光谱仪有时间调制型和空间调制型两种。  由于物质的光谱与它的属性密切相关,太阳光照射到月表后被漫反射,不同的物质将呈现不同的反射光谱,成像光谱仪就利用了这个原理,通过

干涉成像光谱仪的分类

  成像光谱技术从原理上讲分为色散型和干涉型两大类:色散型成像光谱仪是利用色散元件(光栅或棱镜等)将复色光色散分成序列谱线,然后再用探测器测量每一谱线元的强度。而干涉型成像光谱仪是同时测量所有谱线元的干涉强度,对干涉图进行逆傅里叶变换将得到目标的光谱图。  因色散型成像光谱仪中均含有人射狭缝,狭缝越

干涉成像光谱仪的发展历程

  干涉成像光谱技术的出现源于干涉光谱学的发展。1880年,迈克耳逊(iMhcelson)发明了以他的名字命名的干涉仪。后来瑞利首先认识到干涉仪所产生的干涉图(干涉条纹),可以通过傅里叶变换而得出其光谱,即干涉图与光谱之间存在着一种对应的傅里叶变换的数学运算关系,从而通过傅里叶积分变换的数学运算把干

成像光谱仪简介

  高光谱遥感(HyperspectralRemote Sensing):全称为高光谱分辨率遥感,是指用很窄(l/100)而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是

西安光机所研制出干涉成像光谱仪的平场方法

  干涉成像光谱仪输出的图像信息是干涉条纹,其不同于一般照相机。因此,普通照相机的平场原理与方法不适用于干涉成像光谱仪。目前,修正CCD探测器与电子学部分像元间响应不一致性的方法,其修正的全面性及效果相对较差。尤其是当光学系统具有较大视场甚至有渐晕时,缺点更为突出。   针对这一难题

成像光谱仪的发展背景简介

  简介  成像光谱就是在特定光谱域以高 光谱分辨率同时获得连续的地物光谱图像,这使得遥感应用可以在光谱维上进行空间展开,定量分析地球表层 生物物理化学过程与参数。  发展背景  70年代末80年代初,在研究归纳各种 地物光谱特征的基础上,形成这样一个概念:如果能实现连续的窄波段成像,那么就有可能实

干涉仪的简介

  干涉仪是很广泛的一类实验技术的总称, 其思想在于利用波的叠加性来获取波的相位信息, 从而获得实验所关心的物理量。干涉仪并不仅仅局限于光干涉仪。 干涉仪在天文学 (Thompson et al, 2001), 光学, 工程测量, 海洋学, 地震学, 波谱分析, 量子物理实验, 遥感, 雷达等等精密

简介成像光谱仪的性能参数和原理

  性能参数和原理  成像光谱仪主要性能参数是:  (1)噪声等效 反射率差(NEΔp ),体现为 信噪比(SNR);  (2) 瞬时视场角(IFOV),体现为 地面分辨率;  (3) 光谱分辨率,直观地表现为波段多少和波段谱宽。  高光谱分辨率遥感信息分析处理,集中于光谱维上进行图像信息的展开和定

马赫曾德干涉仪干涉原理简介

  马赫—曾德干涉仪由于不带有纤端反射镜,需要增加一个3dB分路器,如下图。光源发出的相干光经3dB分路器分为光强1:1的两束光分别进入信号臂光纤和参考臂光纤,两束光经第二个3dB分路器汇合相干形成干涉条纹。M—Z干涉仪的优点是不带纤端反射镜,克服了迈克耳逊干涉仪回波干扰的缺点,因而在光纤传感技术领

嫦娥一号卫星干涉成像光谱仪和CCD立体相机通过成果鉴定

  由中国科学院西安光学精密机械研究所承担研制,曾为我国首次探月工程做出突出贡献的嫦娥一号卫星干涉成像光谱仪和CCD立体相机,于5月25日在西安通过了中国科学院西安分院组织的成果鉴定。   以中科院国家天文台李春来研究员为组长的专家鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪采用干

关于近红外高光谱成像光谱仪的简介

  近红外高光谱成像光谱仪是一种用于物理学领域的分析仪器,于2012年12月31日启用。  一、近红外高光谱成像光谱仪的技术指标:狭缝尺寸:30微米; 成像分辨率:3.64纳米; 光谱范围:900-1700纳米; 数值孔径:2。  二、近红外高光谱成像光谱仪的主要功能:光谱仪核心部分包括均匀光源、光

瑞利干涉仪简介

  一种分波面双光束干涉仪。1896年,瑞利研究制成,是杨氏双缝干涉实验装置的改型,用于测定流体的折射率。单色缝光源S位于透镜L1的前焦面,出射的平行光射到与S平行的狭缝S1和S2上,从双缝出来的光分别通过长度为l的玻璃管T1和T2,接着分别通过补偿板C1和C2,在透镜L2的后焦面上相遇,产生干涉条

白光干涉仪简介

  干涉仪是一种对光在两个不同表面反射后形成的干涉条纹进行分析的仪器。其基本原理就是通过不同光学元件形成参考光路和检测光路。  干涉仪是利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介

外差干涉仪简介

  又称双频干涉仪或交流干涉仪。是使用两种不同频率的单色光作为测量光束和参考光束。通过光电探测器的混频,输出差频信号(受光电探测器频响的限制,频差一般在 100兆赫以内)。被测物体的变化如位移、振动、转动、大气扰动等引起的光波相位变化或多普勒频移载于此差频上,经解调即可获得被测数据的仪器。 

关于近红外高光谱成像地物光谱仪的简介

  近红外高光谱成像地物光谱仪是一种用于林学领域的电子测量仪器,于2017年4月10日启用。  一、近红外高光谱成像地物光谱仪的技术指标:  近红外高光谱成像光谱仪主机:HyperspecNIR1003A-10168;900-1700nm消色差镜头;HyperspecIIIforNIR:E51111

超导量子干涉仪简介

  SQUID实质是一种将磁通转化为电压的磁通传感器,其基本原理是基于超导约瑟夫森效应和磁通量子化现象.以SQUID为基础派生出各种传感器和测量仪器,可以用于测量磁场,电压,磁化率等物理量.被一薄势垒层分开的两块超导体构成一个约瑟夫森隧道结.当含有约瑟夫森隧道结的超导体闭合环路被适当大小的电流偏置后

干涉显微镜简介

  采用通过样品内和样品外的相干光束产生干涉的方法,把相位差(或光程差)转换为振幅(光强度)变化的显微镜,根据干涉图形可分辨出样品中的结构,并可测定样品中一定区域内的相位差或光程差。由于分开光束的方法不同,有不同类型的干涉显微镜,以及用于测定非均匀样品的积分显微镜干涉仪。干涉显微镜主要用于测定活的或

双光束干涉仪简介

  双光束干涉仪是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用

斐索干涉仪简介

  斐索干涉仪是一种原理为等厚干涉,用以检测光学元件的面形、光学镜头的波面像差以及光学材料均匀性等的精密仪器。其测量精度一般为/10~/100,为检测用光源的平均波长。  干涉仪的一种类型。由斐索(H.Fi zeau1819—1896)研究而得名。光路见图1,点光源S的光线经准直后,近乎正入射地照射

雅满干涉仪简介

  这种干涉仪是J.雅满于1856年发明的。雅满用他的干涉仪研究了水的折射率随压力的变化关系,并用它来测定水蒸气的折射率。后人多用它来测量气体的折射率。  雅满干涉仪基本上由两块折射率和厚度都完全相同的平行平面玻璃板组成,每一块板都有一个镀银面,其结构如图1所示。  自扩展光源发出的一束光,以45°

傅里叶变换红外光谱仪干涉原理

傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经过干涉后照射到样品上然后到达检测器,傅立叶变换红外光谱仪测量部分的主要核心部件是干涉仪,图3是单束光照射迈克尔逊干涉仪时的工作原理图,干涉仪是由固定不动的反射镜M1(定镜),可移动的反射镜M2(动镜)及分光束器B组成,M1和M2是

干涉合成孔径雷达的简介

  这种测量方法使用两幅或多幅合成孔径雷达影像图,根据卫星或飞机接收到的回波的相位差来生成数字高程模型或者地表形变图。理论上此技术可以测量数日或数年间厘米级的地表形变,可以用于自然灾害监测,例如地震、火山和滑坡,以及结构工程尤其是沉降监测和结构稳定性。

成像光谱仪的应用介绍

  高光谱分辨率成像光谱遥感起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。  成像光谱仪在高光谱测量的基础上,具有图谱合一的优势,可以精确到叶片一个点去探测作物不同胁迫症状的特征,又可获取受胁迫作物面状的光谱信息,点面结合综合地反映作物遭受胁迫的程度。所以

斐索干涉仪原理简介

  斐索干涉仪原理为等厚干涉,用以检测光学元件的面形、光学镜头的波面像差以及光学材料均匀性等的一种精密仪器。其测量精度一般为/10~/100,为检测用光源的平均波长。常用的波面干涉仪为泰曼干涉仪和斐索干涉仪。  斐索干涉仪有平面的和球面的两种,前者由分束器、准直物镜和标准平面所组成,后者由分束器、有

拉曼成像光谱仪

  拉曼成像光谱仪是一种用于生物学、基础医学、临床医学、药学领域的分析仪器,于2013年12月31日启用。  技术指标  1) 激光器:内置3个激光器 —532nm、638nm和785nm; 2) 光栅:4块光栅全自动切换,自由选择多种光谱分辨率; 3) 光谱范围:100cm-1到4000cm-1,

微型成像光谱仪介绍

WH-PHIS-HSM微型成像光谱仪微型成像光谱仪,采用全反射光学设计,凸面光栅分光,增加了能量传递,减小了体积,减轻了重量,适合以无人机或飞艇为平台对地遥感探测,广泛应用于地质、环保、海洋、农业和国土等领域遥感探测WH-PHIS-HSM微型成像光谱仪产品特点仪器采用光纤传输,分光系统单块光栅实现了

新型干涉光谱成像技术研究取得重要进展

  中科院西安光学精密机械研究所新型干涉光谱成像技术研究日前取得重要进展。以胡炳樑研究员为首的研究团队在国内率先将离轴三反光学系统应用于短波红外干涉光谱成像系统中,并成功研制了基于M-Z像面干涉光谱成像的离轴三反桌面样机系统。   面向宽覆盖、高分辨率、高光谱分辨率的要求,离轴三反加

马赫曾德干涉仪的历史简介

  1802年,托马斯·杨在英国皇家学会讲演时,引用自己所做的双孔(双缝)干涉实验。他说:“为使这两部分光在屏幕上引起的效果叠加起来,需要使来自同一光源、经过不同路径的光到达同一区域,而不使其相离散,如有离散,也能根据回折、反射或折射把光从一方或从两方重合起来,将它们的效果叠加。但是,最简单的办法是