成像光谱仪的应用介绍
高光谱分辨率成像光谱遥感起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。 成像光谱仪在高光谱测量的基础上,具有图谱合一的优势,可以精确到叶片一个点去探测作物不同胁迫症状的特征,又可获取受胁迫作物面状的光谱信息,点面结合综合地反映作物遭受胁迫的程度。所以,成像高光谱已经成为国内外研究的热点,学者们利用高光谱成像技术定量化地提取作物所遭受的各种胁迫特征,根据高分辨率的图像对叶片及叶片的局部区域进行分析,从而在更加微观的尺度上进行机理探测研究。 正是因为成像光谱仪可以得到波段宽度很窄的多波段图像数据,所以它多用于地物的光谱分析与识别上。特别是,由于成像光谱仪的工作波段为可见光、近红外、短波红外,因此对于特殊的矿产探测及海色调查是非常有效的,尤其是矿化蚀变岩在短波段具有诊断性和光谱特性。......阅读全文
成像光谱仪的应用介绍
高光谱分辨率成像光谱遥感起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。 成像光谱仪在高光谱测量的基础上,具有图谱合一的优势,可以精确到叶片一个点去探测作物不同胁迫症状的特征,又可获取受胁迫作物面状的光谱信息,点面结合综合地反映作物遭受胁迫的程度。所以
干涉成像光谱仪的应用
最初成像光谱仪的发展,主要是用于植被遥感和地质矿物识别研究之用(Goetz等,1985)。但是随着成像光谱技术的深入研究,它己被广泛应用在大气科学、生态、地质、水文和海洋等学科中(Vanes&Goetz,1993)。 它在军事和民用领域,都有广泛的应用前景。在军事上,与可见光照相侦察技术相比,
微型成像光谱仪介绍
WH-PHIS-HSM微型成像光谱仪微型成像光谱仪,采用全反射光学设计,凸面光栅分光,增加了能量传递,减小了体积,减轻了重量,适合以无人机或飞艇为平台对地遥感探测,广泛应用于地质、环保、海洋、农业和国土等领域遥感探测WH-PHIS-HSM微型成像光谱仪产品特点仪器采用光纤传输,分光系统单块光栅实现了
hyspex无人机载成像光谱仪的应用范围
hyspex无人机载成像光谱仪技术具有低成本、低损、可重复使用且风险小等诸多优势,其应用领域从起初的侦察、早期预警等军事领域扩大到资源勘测、气象观测及处理突发事件等非军事领域。它的高时效、高分辨率等性能,是传统卫星遥感所无法比拟的,越来越受到研究者和生产者的青睐,大大扩大了遥感的应用范围和用户群
光谱仪的应用介绍
应用 光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、拉曼光谱、半导体工业、成分检测、颜色混合及匹配、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜
成像光谱仪简介
高光谱遥感(HyperspectralRemote Sensing):全称为高光谱分辨率遥感,是指用很窄(l/100)而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是
关于光谱仪的应用介绍
光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、拉曼光谱、半导体工业、成分检测、颜色混合及匹配、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等
光栅光谱仪的应用介绍
光栅光谱仪,是将成分复杂的光分解为光谱线的科学仪器。通过光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。光栅光谱仪被广泛应用于颜色测量、化学成份的浓度测量或辐射度学分析、膜厚测量、气体成分分析等领域中。光栅光谱仪的应用介绍:1、检测化合物结构方面
凝胶成像仪的应用范围介绍
从整体总的来说凝胶成像(系统)可应用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析 (1)分子量定量 对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNAMarker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量。通过这种方
干涉成像光谱仪的分类
成像光谱技术从原理上讲分为色散型和干涉型两大类:色散型成像光谱仪是利用色散元件(光栅或棱镜等)将复色光色散分成序列谱线,然后再用探测器测量每一谱线元的强度。而干涉型成像光谱仪是同时测量所有谱线元的干涉强度,对干涉图进行逆傅里叶变换将得到目标的光谱图。 因色散型成像光谱仪中均含有人射狭缝,狭缝越
干涉成像光谱仪的简介
1880年,迈克耳逊(iMhcelson)发明了以他的名字命名的干涉仪。后来瑞利首先认识到干涉仪所产生的干涉图(干涉条纹),可以通过傅里叶变换而得出其光谱,即干涉图与光谱之间存在着一种对应的傅里叶变换的数学运算关系,从而通过傅里叶积分变换的数学运算把干涉图(干涉条纹)与辐射光谱直接联系了起来,这
干涉成像光谱仪的概述
干涉成像光谱仪是利用干涉原理获得一系列随光程差变化的干涉图样,通过反演可以得到目标物体的二维空间图像和一维光谱信息的仪器。干涉成像光谱仪有时间调制型和空间调制型两种。 由于物质的光谱与它的属性密切相关,太阳光照射到月表后被漫反射,不同的物质将呈现不同的反射光谱,成像光谱仪就利用了这个原理,通过
介绍微型光谱仪应用
随着微型光谱仪应用测量系统的不断拓展,其快速高效分析及便携式实时应用的优势逐渐显现出来,光谱分析技术正逐步从实验室分析走向现场实时检测。依据现阶段实际应用现状,微型光纤光谱仪在以下领域得到广泛的应用。 透射吸收测量:透射吸收测量用于测定液体或气体中介质对作用光的吸收,依据比耳定律,吸光度正比于
凝胶成像系统应用分析详细介绍
凝胶成像系统应用范围 总体上来说凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析。 (1)分子量定量 对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量
凝胶成像系统应用分析详细介绍
凝胶成像系统即对DNA/RNA/蛋白质等凝胶电泳不同染色(如eb、考马氏亮蓝、银染、sybr green)及微孔板、平皿等非化学发光成像检测分析。凝胶成像系统可以应用于分子量计算,密度扫描,密度定量, PCR定量等生物工程常规研究。 凝胶成像系统应用范围 总体上来说凝胶成像系统可以用
拉曼成像光谱仪
拉曼成像光谱仪是一种用于生物学、基础医学、临床医学、药学领域的分析仪器,于2013年12月31日启用。 技术指标 1) 激光器:内置3个激光器 —532nm、638nm和785nm; 2) 光栅:4块光栅全自动切换,自由选择多种光谱分辨率; 3) 光谱范围:100cm-1到4000cm-1,
成像光谱仪的发展背景简介
简介 成像光谱就是在特定光谱域以高 光谱分辨率同时获得连续的地物光谱图像,这使得遥感应用可以在光谱维上进行空间展开,定量分析地球表层 生物物理化学过程与参数。 发展背景 70年代末80年代初,在研究归纳各种 地物光谱特征的基础上,形成这样一个概念:如果能实现连续的窄波段成像,那么就有可能实
成像光谱仪的原理是什么
成像光谱仪是20世纪80年代开始在多光谱遥感成像技术的基础上发展起来的,它以高光谱分辨率获取景物或目标的高光谱图像,在航空、航天器上进行陆地、大气、海洋等观测中有广泛的应用,高光谱成像仪可以应用在地物精确分类、地物识别、地物特征信息的提取。建立目标的高光谱遥感信息处理和定量化分析模型后,可提高高光谱
干涉成像光谱仪的发展历程
干涉成像光谱技术的出现源于干涉光谱学的发展。1880年,迈克耳逊(iMhcelson)发明了以他的名字命名的干涉仪。后来瑞利首先认识到干涉仪所产生的干涉图(干涉条纹),可以通过傅里叶变换而得出其光谱,即干涉图与光谱之间存在着一种对应的傅里叶变换的数学运算关系,从而通过傅里叶积分变换的数学运算把干
成像光谱仪分析食品物性
除了化学和生物学特性外,食品的质量也反映在其新鲜度或组成上。德国Fraunhofer光学微系统研究所(IPMS)的研究者们借助于一种新开发的成像式近红外光谱仪可以对这一质量特性进行检测。 食品不仅应该从化学和生物学方面来看符合质量标准,还应该是新鲜、未受损伤和具有高质量的组成,至少消费者们
高光谱成像光谱仪
高光谱成像光谱仪是一种用于农学领域的分析仪器,于2016年8月11日启用。 技术指标 技术参数:光谱范围1.0–2.5µm;空间像素384;F数F2.0,FOV16°;像素跨轨和延轨FOV,跨轨:0.73毫弧度,延轨:0.73毫弧度;光谱SAMPL5.45nm;噪声150e;峰值信噪比>11
活体成像技术的应用
光学活体成像技术主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。可见光体内成像通过对同一组实验对象在不同时
活体成像技术应用
动物模型已经成为癌症,动脉粥样硬化,神经系统疾病(如阿尔茨海默氏病)和传染病研究中不可或缺的手段,而在这个过程中,很多情况下下需要使用到活体成像技术。原因是活体城乡技术可用于研究观测特异性细胞、基因和分子的表达或者相互作用关系,追踪靶细胞,药物,从分子和细胞水平对药物疗效进行成像,从病理水平评估
凝胶成像系统应用
广泛的应用范围:可用于DNA/RNA凝胶、蛋白质凝胶、印迹杂交膜(包括Western, Southern, Northern, Slot/点杂交膜)、放射自显影胶片、酶标板、细菌培养平板等图像的成像及分析处理。 凝胶图像分析软件有助于研究人员正确、迅速地得到电泳照片和分析结果。帮助广大从事分子
显微成像拉曼光谱仪概述
显微成像拉曼光谱仪是一种用于材料科学、畜牧、兽医科学、农学、药学领域的计量仪器,于2018年10月9日启用。 技术指标 1. *光谱仪:光谱仪采用三反射镜消像差光路设计,全光谱范围无色差,系统通光效率>30%。 2.*EMCCD探测器 1).Andor公司EMCCD探测器 2).真空密封,致
凝胶/化学发光成像系统的分类及应用介绍
(1)普通凝胶成像分析系统:可以对蛋白电泳凝胶,DNA凝胶样品进行图象采集并进行定性和定量分析,样品包括:EB、SYBR Green、SYBR Gold、Texas Red、GelStar、Fluoroscecin、 Radiant Red等染色的核酸监测;以及Coomassie Blue、SYPR
凝胶成像系统的应用范围
总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析 (1)分子量定量 对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量
拉曼成像的应用案例
快速区分单层与多层石墨烯激光源:532nm。物镜:100X,NA=0.9。光谱数:67,600(400*169)。测量时间:5分30秒。通过高速高分辨拉曼成像技术,可以对不同层数的石墨烯快速成像。以350纳米的高空间分辨率,仅用5分钟的测量时间即可识别从单层到四层的石墨烯及其分布。材料应力分布图像分
热成像仪的应用
(1)对于发电机、电动机的不平衡负载,轴承温度过高,碳刷、滑环和集流环发热,绕组短路或开路,冷却管路堵塞,过载过热等问题进行监测。 (2)可以对电气设备进行维修检查。而对于安全防盗,屋顶查漏,环保检查,节能检测,无损探伤,森林防火,医疗检查,质量控制等也比较有帮助。 (3)可以监控像火山爆发
STELLARIS的荧光寿命成像应用
上一期介绍了Leica的科学家们利用新一代Power HyD S检测器与二代白激光,挣脱金字塔的束缚。然而,仅在这四个顶点上的不断探索,似乎并不能完全复刻真实。于是科学家们提出了一个新的方向——功能成像。为了实现功能成像,我们在之前的成像基础上引入一个崭新的维度——荧光寿命成像。以往,提到荧光寿命成