开尔文探针力显微镜的简介

开尔文探针力显微镜(Kelvin probe force microscope、KPFM)是一种原子力显微镜,于1991年问世。开尔文探针力显微镜利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。......阅读全文

侧向力显微镜

侧向力显微镜(Lateral force Microscope, LFM)LFM 的作用方式主要是使探针与样品表面相接触并在表面上平移,利用探针移动时所承受样品表面摩擦力以及样品表面高低起伏造成悬臂的偏斜量来探知样品的材质与表面特性。图6 的样品是在硅表面放置的单层Langmuir-Blod get

原子力显微镜

原子力显微镜(Atomic Force Microscope,AFM)是在1986年由扫描隧道显微镜(Scanning Tunneling Mi-croscope,STM)的发明者之一的Gerd Binnig博士在美国斯坦福大学与Quate C F和Gerber C等人研制成功的一种新型的显微镜[1

简介手动探针台用途

  探针台主要应用于半导体行业、光电行业、集成电路以及封装的测试。 广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本。  手动探针台的主要用途是为半导体芯片的电参数测试提供一个测试平台,探针台可吸附多种规格芯片,并提供多个可调测试针以及探针座,配

九牛力的简介

  九牛力(拉丁名:Smilax perfoliata Lour)是百合科植物穿鞘菝葜的根茎,别名川太、土萆薢。[1]  九牛力茎通常疏生刺。叶互生;叶柄长2-3.5cm,基部两侧具耳状的鞘,有卷须,脱落点位于近中部,鞘外折或近直立,作穿茎状抱茎;叶片革质,卵形或椭圆形,长9-20cm,宽4.5-1

扫描探针显微镜的产品特点

SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:首先,SPM具有极高的分辨率。它可以轻易的“看到”原子,这是一般显微镜甚至电子显微镜所难以达到的。其次,SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器是通过间接的或计算的方法来推算样品的表面结构。也就

扫描探针显微镜的微放电

      扫描探针显微镜通常用来对微纳米尺度样品的表面结构与性质进行表征,对形貌表征具有极高的空间分辨率,通过处理和分析微探针与样品之间的各种相互作用力,可以精确研究样品局部的电学、力学性质。微放电是一种将放电限制在有限空间内的气体放电,在大气压下当电极尺寸缩小到一定程度时,空气放电机理与长间隙空

扫描探针显微镜的产品特点

SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:首先,SPM具有极高的分辨率。它可以轻易的“看到”原子,这是一般显微镜甚至电子显微镜所难以达到的。其次,SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器是通过间接的或计算的方法来推算样品的表面结构。也就

扫描探针显微镜的应用特点

扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜,静电力显微镜,磁力显微镜,扫描离子电导显微镜,扫描电化学显微镜等)的统称,是国际上近年发展起来的表面分析仪器,是综合运用光电子技术、激光技

扫描探针显微镜的技术特点

SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:首先,SPM具有极高的分辨率。它可以轻易的“看到”原子,这是一般显微镜甚至电子显微镜所难以达到的。其次,SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器是通过间接的或计算的方法来推算样品的表面结构。也就

扫描探针显微镜的应用介绍

SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有它的用武之地。SPM的价格相对于电子显微镜等大型仪器来讲是较低的。同其它表面分析技术相比,SPM 有着诸多优势,不仅可以得到高分辨率的表面成像,与其他类型的显微镜相比(光学显微镜,电子显微镜)相比,SPM

扫描探针显微镜广泛的应用

        SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有它的用武之地。     SPM的价格相对于电子显微镜等大型仪器来讲是较低的。     同其它表面分析技术相比,SPM 有着诸多优势,不仅可以得到高分辨率的表面成像,与其他类型的显微镜相比(

扫描探针显微镜(SPM)的特点

1、局域探针:探测样品的局域特性、表面形貌、电子结构、电场、磁场等其他局域特性、2、高分辨率:STM x、y 0.1nm,Z 0.01nm3、可在不同环境下成像:大气、超高真空、溶液、低温、高温4、对样品无损伤、无干扰5、实时、动态过程的研究:吸附、脱附、结构相变、化学反应6、谱学特性测量:扫描隧道

扫描探针显微镜的功能介绍

扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜,静电力显微镜,磁力显微镜,扫描离子电导显微镜,扫描电化学显微镜等)的统称,是国际上近年发展起来的表面分析仪器,是综合运用光电子技术、激光技

扫描探针显微镜的技术特点

SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:首先,SPM具有极高的分辨率。它可以轻易的“看到”原子,这是一般显微镜甚至电子显微镜所难以达到的。其次,SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器是通过间接的或计算的方法来推算样品的表面结构。也就

相关探针和电子显微镜™(CPEM)的关联成像技术简介

LiteScope™是一种独特的扫描探针显微镜(SPM)。 它设计用于轻松集成到各种扫描电子显微镜(SEM)中。 组合互补的SPM和SEM技术使其能够利用两者的优势。使用LiteScope™及其可更换探针系列,可以轻松进行复杂的样品分析,包括表面形貌,机械性能,电性能,化学成分,磁性能等的表征。相关

超高真空扫描探针显微镜

  超高真空扫描探针显微镜是一种用于材料科学、物理学领域的分析仪器,于2011年12月15日启用。  1、技术指标  工作温度为室温,样品粗定位范围>6 mm×6 mm,单管扫描范围>6 μm×6 μm×2 μm。STM模式下可实现Si(1 1 1)和Au(1 1 1)表面的原子分辨;AFM接触模式

扫描探针显微镜(SPM)针尖

1、STM针尖:W丝、Pt-Ir丝。超高真空一般用W丝,通过电化学腐蚀、高温退火或原位处理以去除氧化层。大气中一般用Pt-Ir丝,直接剪切制成。2、AFM针尖:Si、SiN4材料,通过微加工光刻的方法制备。

扫描探针显微镜(SPM)特点

  1.扫描隧道显徽镜(STM)和原子力显微镜同其他显微镜相比具有分辨率高、工作环境要求低、待测样品要求低、不需要重金属投影等优点,所以它们观察到的图像更能直接反映样品的原有特点。  2.借助于快速的计算机图像采集系统时,STM和AFM还可以用来观察细胞,亚细胞水平甚至是分子水平上的快速动态变化过程

扫描探针显微镜(SPM)结构

1、探针:STM金属探针,AFM微悬臂、光电二极臂2、机械控制系统:压电扫描器、粗调定位装置、振动隔离系统3、电子学控制系统:电子学线路、接口,控制软件

石英音叉扫描探针显微镜

    石英音叉是一种谐振频率稳定、品质因数高的时基器件,其音叉臂的谐振参数(谐振振幅和谐振频率)对微力极其敏感。利用石英音叉对外力的敏感性,与钨探针结合,构成一种新型的表面形貌扫描测头。该测头与xyz压电工作台结合,利用测头音叉臂谐振频率对扫描微力的敏感性,研制基于相位反馈控制的扫描探针显微镜。 

什么是扫描探针显微镜?

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发

扫描探针显微镜发展历史

1981年,Bining,Rohrer在IBM苏黎世实验室发明了扫描隧道显微镜(STM)并为此获得1986年诺贝尔物理奖。STM的出现使人类能够对原子级结构和活动过程进行观察。由于STM需要被测样本必须为导体或半导体,其应用受到一定的局限。  1985年,原子力显微镜(AFM)的发明则将观察对象由导

原子力显微镜的特点

原子力显微镜的特点  1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。  3.应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整

原子力显微镜的原理

AFM 是在STM 基础上发展起来的,是通过测量样品表面分子(原子)与AFM 微悬臂探针之间的相互作用力,来观测样品表面的形貌。AFM 与STM 的主要区别是以1 个一端固定而另一端装在弹性微悬臂上的尖锐针尖代替隧道探针,以探测微悬臂受力产生的微小形变代替探测微小的隧道电流。其工作原理:将一个对极微

原子力显微镜的原理

原子力显微镜用一个探针在样品表面移动,根据探针的振动在测定样品表面的起伏。这就类似你用手触摸感受物体表面的光滑程度,所以当然不需要样品导电。

原子力显微镜的原理

原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表

原子力显微镜的好处

我们前面已经提到,原子力显微镜的测量依靠的是针尖与物体表面之间的相互作用,而这种相互作用是广泛存在于各种分子或者原子之间的,所以原子力显微镜可以直接测量几乎各种表面的结构而不需要像电子显微镜那样做特殊的样品处理,同时原子力显微镜也不像电子显微镜那样需要一个高真空的环境。这不仅节省了大量的时间精力,而

原子力显微镜的原理

原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表

原子力显微镜的特点

原子力显微镜的特点1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。2.非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫