质谱仪器生物质谱分析解释
生物质谱分析 生物质谱分析(Biological mass spectrometry)是以质谱分析技术用于精确测量生物大分子,如蛋白质,核苷酸和糖类等的分子量,并提供分子结构信息。对存在于生命复杂体系中的微量或痕量小分子生物活性物质进行定性或定量分析。一般的方法有:电喷雾电离质谱,基质辅助激光解吸电离质谱,快原子轰击质谱,离子喷雾电离质谱,大气压电离质谱。......阅读全文
质谱仪器生物质谱分析解释
生物质谱分析 生物质谱分析(Biological mass spectrometry)是以质谱分析技术用于精确测量生物大分子,如蛋白质,核苷酸和糖类等的分子量,并提供分子结构信息。对存在于生命复杂体系中的微量或痕量小分子生物活性物质进行定性或定量分析。一般的方法有:电喷雾电离质谱,基质辅助激光
生物质谱仪的简介
自1886年Goldstein发明早期质谱仪器常用的离子源,到1942年第一台单聚焦质谱仪商品化,质谱基本上处于理论发展阶段。随后质谱在电离技术和分析技术上的发展和完善,使之很快应用于地质、空间研究、环境化学、有机化学、制药等多个领域。
生物质谱仪的分类
商业化的生物质谱仪,其离子化方式主要是电喷雾电离与基质辅助激光解吸电离,前者常采用四极杆质量分析器,所构成的仪器称为电喷雾(四极杆)质谱仪(ESI-MS),后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。ESI-MS的特点之一是可以
生物质谱仪的分类
商业化的生物质谱仪,其离子化方式主要是电喷雾电离与基质辅助激光解吸电离,前者常采用四极杆质量分析器,所构成的仪器称为电喷雾(四极杆)质谱仪(ESI-MS),后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。ESI-MS的特点之一是可以和液
生物质谱仪的分类
商业化的生物质谱仪,其离子化方式主要是电喷雾电离与基质辅助激光解吸电离,前者常采用四极杆质量分析器,所构成的仪器称为电喷雾(四极杆)质谱仪(ESI-MS),后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。ESI-MS的特点之一是可以和液
生物质谱仪的概述
自1886年Goldstein发明早期质谱仪器常用的离子源,到1942年第一台单聚焦质谱仪商品化,质谱基本上处于理论发展阶段。随后质谱在电离技术和分析技术上的发展和完善,使之很快应用于地质、空间研究、环境化学、有机化学、制药等多个领域。 随后质谱在电离技术和分析技术上的发展和完善,使之很快应用
质谱分析的名词解释
质谱分析即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。 质谱分析是纯物质鉴定的最有力工具之一,其中包
质谱仪器质谱分析的简介
质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,可用来分析同位素成分、有机物构造及元素成分等。第一台质谱仪是英国科学家弗朗西斯·阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为
简介生物质谱仪的医学应用
生物质谱可提供快速、易解的多组分的分析方法,且具有灵敏度高、选择性强、准确性好等特点,其适用范围远远超过放射性免疫检测和化学检测范围,生物质谱在检验医学中主要可用于生物体内的组分序列分析、结构分析、分子量测定和各组分含量测定。 1.核酸检测的应用:核酸的分子生物学研究已经成为生命化学、分子生物
生物质谱仪的有哪些种类?
电喷雾(四极杆)质谱仪(ESI-MS)基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。离子阱(ion trap,IT)质谱和傅里叶变换离子回旋共振(Fourier transform ion cyclotron resonance,FTICR)质谱液相色谱-电喷雾-四极杆飞行时间串联
微生物质谱仪检测原理
微生物质谱仪检测原理如下:微生物的质谱鉴定是一种基于细菌全细胞蛋白质组指纹图谱分析的技术,与Sherlock全自动微生物鉴定系统的细胞脂肪酸成分分析相类似,质谱分析亦需要通过专门的数据分析和专家系统对未知细菌的特殊蛋白图谱与菌种文库中收集的菌种蛋白质组指纹图谱进行比较。由于微生物质谱分析的蛋白质大分
生物质谱仪的应用领域
随后质谱在电离技术和分析技术上的发展和完善,使之很快应用于地质、空间研究、环境化学、有机化学、制药等多个领域。然而,即使在等离子体解吸(plasma desorption,PD)和快原子轰击(fast atom bombardment,FAB)两项软电离质谱技术出现以后,质谱分析的相对分子质量也只是
微生物质谱仪检测原理
微生物质谱仪检测原理如下:微生物的质谱鉴定是一种基于细菌全细胞蛋白质组指纹图谱分析的技术,与Sherlock全自动微生物鉴定系统的细胞脂肪酸成分分析相类似,质谱分析亦需要通过专门的数据分析和专家系统对未知细菌的特殊蛋白图谱与菌种文库中收集的菌种蛋白质组指纹图谱进行比较。由于微生物质谱分析的蛋白质大分
解释暗物质与可见物质起源有了统一模型
尽管科学家用了精确的宇宙测量方法,但据目前所知,宇宙能量中仅有约4.6%是由重子物质(正常原子)构成,23%由暗物质构成,剩下约72%由暗能量构成。而且,在可见宇宙中,几乎所有的重子物质都是物质(重子带正电荷)而不是反物质(重子带负电荷)。物理学家最近提出了一种新机制,能同时解释宇
编译器与解释器
编译器与解释器编译器/解释器:高级语言与机器之间的翻译官都是将代码翻译成机器可以执行的二进制机器码,只不过在运行原理和翻译过程有不同而已。那么两者有什么区别呢?编译器:先整体编译再执行解释器:边解释边执行用一个通俗的例子进行比喻:我们去饭馆吃饭,点了八菜一汤。编译器的方式就是厨师把所有的菜给
生物质谱仪在核酸检测的应用
核酸检测的应用:核酸的分子生物学研究已经成为生命化学、分子生物学及医学领域中最具有活力的研究方向之一。通过现代生物质谱技术,我们不但能够得到寡聚核苷酸的分子质量,而且能够通过相关的技术得到它的序列信息。
生物质谱仪对药物分析的应用
药物分析的应用:质谱在药物分析中的应用包括:合成药物组分分析,天然药物成分分析,肽和蛋白质药物(包括糖蛋白)氨基酸序列分析,药物代谢研究和中药成分分析。在检验医学中应用较多的是治疗药物监测(TDM),以前药物检测主要使用免疫化学技术和高效液相色谱技术。虽然,免疫化学技术简单易行,但是所测定药物种
生物质谱仪的应用领域简介
自1886年Goldstein发明早期质谱仪器常用的离子源,到1942年第一台单聚焦质谱仪商品化,质谱基本上处于理论发展阶段。随后质谱在电离技术和分析技术上的发展和完善,使之很快应用于地质、空间研究、环境化学、有机化学、制药等多个领域。 应用领域 随后质谱在电离技术和分析技术上的发展和完善,
质谱分析法术语标准物质
标准物质(reference materials,RM)亦称参考物质。已确定其一种或几种特性量值,用于校准测量器具、评价测量方法或确定材料特性量值的物质。标准物质是国家计量部门颁布的一种计量标准,具有以下的基本属性:均匀性稳定性和准确量值。标准物质可以是纯的或混合的气体、液体或固体,也可以是一件制品
质谱分析法术语基准物质
基准物质(primary reference materials,PRMs)用权威(或绝对)方法确定其特性量值,具有最高计量特性,并给出了包括物质变动性在内的总不确定度的估计值的标准物质,其特性量值的总不确定度达到最高水平。目前国际上公认的基准物质有:用库仑法定值的纯度标准物质,用同位素稀释质谱法定
质谱仪同位素比质谱仪对同位素标准物质的要求
同位素比质谱仪对同位素标准物质的一般要求是: 1、组成均一性质稳定; 2、数量较多,以便长期使用; 3、化学制备和同位素测量的手续简便; 4、大致为天然同位素比值变化范围的中值,便用于绝大多数样品的测定; 5、可以做为世界范围的零点。
质谱仪同位素质谱分析法的特点
同位素质谱分析法的特点是测试速度快,结果,样品用量少(微克量级)。能测定元素的同位素比值。广泛用于核科学,地质年代测定,同位素稀释质谱分析,同位素示踪分析。
色谱分析的极性物质和非极性物质有哪些
首先一点,是“反相”色谱,不是“反向”色谱。正相色谱和反相色谱是这么来的。一般情况下(历史发展的原因),色谱法中固定相一般都是用极性较大物质,比如常用的硅胶柱,而流动相(洗脱剂、展开剂)一般用的是极性很小或者非极性的物质。因此固定相极性大,流动相极性小的色谱被称作正相色谱。发展较早的色谱大多是遵循这
生物质谱仪在药物分析方面的应用
药物分析的应用:质谱在药物分析中的应用包括:合成药物组分分析,天然药物成分分析,肽和蛋白质药物(包括糖蛋白)氨基酸序列分析,药物代谢研究和中药成分分析。在检验医学中应用较多的是治疗药物监测(TDM),以前药物检测主要使用免疫化学技术和高效液相色谱技术。虽然,免疫化学技术简单易行,但是所测定药物种类比
生物质谱仪的产品分类及性能介绍
目前商业化的生物质谱仪,其离子化方式主要是电喷雾电离与基质辅助激光解吸电离,前者常采用四极杆质量分析器,所构成的仪器称为电喷雾(四极杆)质谱仪(ESI-MS),后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。ESI-MS的特点之一是可以
生物质谱仪对微生物鉴定的应用
微生物鉴定的应用:通过每种细菌分离物的生物质谱可得到基于每种细菌惟一的肽模式或指纹图谱来鉴别细菌,Hsu已用串联质谱鉴定了沙门菌 J。由于蛋白质在细菌体内的含量较高,生物质谱可常用于细菌属、种、株的鉴定;而串联质谱还可针对糖类或脂类的脂肪酸组成进行鉴定;此外,通过对生物样本进行处理后,串联质谱也
在线挥发性有机物质谱仪的应用
在线挥发性有机物质谱仪融合了膜富集、光电离、飞行时间质谱分析、高速数据采集以及高频高压电源等多个关键性技术。具有实时、快速、在线的特点,可实现环境空气和水中VOCs及恶臭气体定性定量检测,节省了离线方法中对样品采样、存贮、运输等过程所需要的时间。另外,设备具有VOCs及恶臭气体溯源功能
生物质谱仪的医学应用相关内容
生物质谱可提供快速、易解的多组分的分析方法,且具有灵敏度高、选择性强、准确性好等特点,其适用范围远远超过放射性免疫检测和化学检测范围,生物质谱在检验医学中主要可用于生物体内的组分序列分析、结构分析、分子量测定和各组分含量测定。 1.核酸检测的应用:核酸的分子生物学研究已经成为生命化学、分子生物
关于萘普生的物质检查介绍
1、氯化物 取本品0.50g,加水50mL,振摇10分钟,滤过(滤纸先用稀硝酸湿润),取续滤液25mL,依法检查(通则0801),与标准氯化钠溶液7.5mL制成的对照液比较,不得更浓(0.030%)。 2、有关物质 照高效液相色谱法(通则0512)测定,避光操作。 供试品溶液:取本品适量
红外光谱分析法的常用术语解释
频峰由基态跃迁到第一激发态,产生的强吸收峰,称为基频峰(强度大);倍频峰由基态直接跃迁到第二、第三等激发态,产生弱的吸收峰,称为倍频峰;合频峰两个基频峰频率相加的峰;Fermi 共振某一个振动的基频与另外一个振动的倍频或合频接近时,由于相互作用而在该基频峰附近出现两个吸收带,这叫做 Fermi 共振