具有壁虎脚剥离特性的仿生摩擦材料被开发

设计在湿环境下具有可逆黏附和摩擦调控特性的智能材料,一直是仿生科学和材料工程领域的重大挑战。大自然中大部分生物能够在不改变界面物理化学相互作用的情况下仅仅依靠黏附器官的动态机械形变就能实现快速可逆黏附和脱附,最典型的一个案例就是壁虎。壁虎脚趾在运动中的机械形变会导致其表面微纳结构与基底接触的状态变化,从而由良好的结合状态(强范德华力、高黏附力)通过剥离的裂纹扩展机制变为脱离状态(弱范德华力、低黏附力)。这赋予了壁虎快速可逆可切换的摩擦黏附能力。目前,针对干、湿交变等复杂作业环境,开发具有壁虎脚机械剥离机制特性的仿生智能摩擦黏附材料迫在眉睫。 中国科学院兰州化学物理研究所固体润滑国家重点实验室材料表界面课题组多年来致力于仿生湿黏滑智能界面的设计与构筑。近日,该课题组成功制备得到具有机械响应自剥离特性的智能壁虎脚黏附材料。研究人员通过耦合表面微结构(蘑菇状硅弹性体)、界面黏附化学(邻苯二酚基湿黏附共聚物胶)和材料机械形变(响应......阅读全文

具有壁虎脚剥离特性的仿生摩擦材料被开发

  设计在湿环境下具有可逆黏附和摩擦调控特性的智能材料,一直是仿生科学和材料工程领域的重大挑战。大自然中大部分生物能够在不改变界面物理化学相互作用的情况下仅仅依靠黏附器官的动态机械形变就能实现快速可逆黏附和脱附,最典型的一个案例就是壁虎。壁虎脚趾在运动中的机械形变会导致其表面微纳结构与基底接触的状态

生物摩擦学:动物仿生学+人体生物摩擦学

  全世界工业能源的1/3被摩擦损耗掉,人体内存在各种摩擦,如关节的摩擦;管腔(血管、气管、消化道、排泄道)内的摩擦;运动产生的肌肉、肌腱间的摩擦等。由于摩擦可以引起人体许多生理变化和疾病。  生物摩擦学(biotrobology)是以生物的摩擦、粘附及其润滑为中心,基于生物体材料的流变性质,研究摩

美工程师发明“仿生壁虎脚”-飞檐走壁或成现实

  在人类无法到达或危险的地方,我们常常派机器人去执行任务,攀墙附壁的本事对它们来说必不可少。据物理学家组织网8月24日报道,美国斯坦福大学机械工程师最近用一种新型黏合剂,给机器人装上仿生壁虎脚,让它们飞檐走壁如履平地。   斯坦福研究设计中心副主任、机械工程教授马克·卡特科斯基领

大壁虎的简介

  大壁虎(学名:Gekko gekko,别名:蛤蚧、仙蟾、多格),壁虎科壁虎属动物,中国国家二级保护动物。其分布于亚洲北回归线附近的亚热带地区,栖息于山岩或荒野的岩石缝隙、石洞或树洞内,有时也在人们住宅的屋檐、墙壁附近活动。  其体长可达30厘米以上,头长大于尾长;背腹面略扁,头呈扁平三角形;皮肤

国际纳米摩擦学知名专家访问兰州化物所

  9月13日,应中国工程院院士、固体润滑国家重点实验室学术委员会主任薛群基研究员邀请,国际纳米摩擦学知名专家、美国俄亥俄大学生物纳米技术与仿生学纳米研究实验室主任Bharat Bhushan教授,国际能源署先进材料委员会副主席、乔治华盛顿大学能源研究所所长Stephen Hsu教授

成都生物所发现目前已知分布海拔最高的壁虎新种金江壁虎

原文地址:http://www.cas.cn/syky/202104/t20210408_4784172.shtml   近日,中国科学院成都生物研究所两栖爬行动物学研究团队描述了壁虎属Gekko新种——金江壁虎Gekko jinjiangensis sp. nov. HOU, SHI, WAN

干细胞辅助壁虎再生“完美”尾巴

   再生身体部位绝非易事!尽管一些蜥蜴可以长回它们被切断的尾巴,但重新长出来的只是一条不完美的软骨管。据《自然·通讯》杂志最新报道,美国南加州大学科学家借助基因编辑干细胞,帮助鳞趾壁虎再生出了更完美的尾巴。这项研究是人类发展再生疗法的一大进步,有望帮助人类治疗难以愈合的伤口。   研究人员调整了胚

欧盟研制成功生物仿生超强粘合材料

   近年来,随着纳米观测技术的持续进步,如X射线散射源技术和高分辨率显微镜技术,为在分子尺度上研究生物仿生材料、充分揭示大自然奥秘开辟了新路径。欧盟科研理事会(ERC)提供350万欧元全额资助,由德国斯图加特新材料研究所(INM)科研人员领导的欧洲SWITCH2STICK研发团队,研究壁虎(Gec

Nature-Communications:发现壁虎爬墙及断尾再生相关基因

  多疣壁虎(Gekko japonicus)的基因序列发表在了本周的《Nature Communications》上。该研究由中国南通大学、深圳华大基因、中科院成都生物研究所和James D. Watson基因组科学研究所(杭州)的联合课题组共同完成。  此项研究是迄今为止规模最大的爬行动物基因组

我国多个大学研究团队联合完成壁虎基因组测序

  南通大学顾晓松院士的研究团队与华大基因、中科院成都生物研究所和浙江大学沃森基因组科学研究院联合完成了壁虎基因组测序,这是迄今为止规模最大的爬行动物基因组测序,为了解壁虎的适应性进化和生物特性提供了基础,相关研究于11月25日在线发表在《自然-通讯》上。  爬行动物经历了3亿年的适应性进化,在形态

华农教授研制新型纳米材料-可高效检测农药残留

  在科学家眼里,壁虎是自然界的“纳米高手”。记者昨从华中农业大学获悉,受此启发,该校韩鹤友教授带领的课题组将仿生思想与纳米技术相结合,创制了一种仿壁虎脚纳米材料。  科学家早前发现,壁虎“飞檐走壁”的奥秘在于脚底隐藏着数百万根纳米级的刚毛,每根刚毛末端又有数百根更细的分支。这些柔软的纳米结构能任意

美科学家开发新型织物-打造蜘蛛侠式衣服

Stickybot外形犹如一只壁虎,也“长”着四只脚,每只脚的尺寸与小孩子的手相当。  北京时间8月30日消息,据英国媒体报道,美国科学家表示能够像蜘蛛侠一样在建筑物上攀爬将在不久后成为现实。目前,科学家正使用一种特殊材料制造粘性手套和鞋子,能够让穿戴者粘在墙壁上并任意攀爬。  他们

中科院合肥研究院研制出仿生机器人

  近日,中科院合肥研究院先进制造技术研究所研制出了一系列的机器人样机,包括双足行走机器人等。其中,仿生机器人能仿飞蛇、仿阿米巴的特殊移动、仿蛇怪蜥蜴的水上行走、仿壁虎的爬行、仿蜘蛛的双眼、仿蚂蚁的导航等。   据该所所长骆敏舟介绍,这些仿生项目由国家自然科学基金支持研发。科研人员吸取了自然的灵感

仿生材料

由于超疏水材料,特别是表面改性后仿生材料(仿荷叶超疏水或仿壁虎钢毛结构超亲水材料)的接触角的表征因结构的特殊性,测试起来特别困难。现有的理论通常基于Wenzel和Cassie模型。这些理论为我们的分析奠定了一定的基础,而实际应用于本征接触角的表征计算时难度相当大。有一些科研人员力图通过分析表面粗糙度

研究发现壁虎可以制造新的脑细胞的证据

  圭尔夫大学的研究人员发现了一种干细胞,这种干细胞可以让壁虎产生新的脑细胞,这就证明了壁虎在受伤后也能再生大脑的部分。  这一发现有助于弥补由于损伤、衰老或疾病而丢失或损坏的人类脑细胞。  安大略省兽医学院(OVC)生物医学科学系的Matthew Vickaryous教授说:“大脑是一个复杂的器官

壁虎断尾、螃蟹断螯,是同种机制在起作用吗

原文地址:http://news.sciencenet.cn/htmlnews/2023/12/513501.shtm贻贝切断足丝,壁虎断尾求生,螃蟹断肢弃螯……生物界存在很多“自虐狂”。这些自弃行为,是由动态生物界面的特殊结构决定的,还是一种接触机制起到了通用作用?江苏大学材料科学与工程学院教授潘

定制化修复让破碎水凝胶如壁虎般“断尾重生”

说起壁虎,你马上能想到它强大的断尾再生能力。受此启发,中国科学院宁波材料技术与工程研究所智能高分子材料团队在陈涛研究员的带领下,提出了水凝胶界面扩散聚合(Interfacial Diffusion Polymerization,IDP)的方法,实现了水凝胶的宏观精准生长,并进一步实现了破损高分子凝胶

《自然》称仿生学呼唤生物学家

   上世纪40年代末,瑞士工程师George de Mestral在清理狗毛上粘的毛刺后受到启发,发明了维可牢。50年后,热衷于观鸟的日本工程师Eiji Nakatsu设计出一种车头形似翠鸟鸟喙、符合空气动力学特征的高速列车。  过去10年间,对此类生物灵感和仿生学的兴趣陡然增加。生物灵感和仿生学

摩擦摩擦,用衣服给手机充电不是梦

  如果能用身上穿的衣物给手机充电,那该多好。但现在的方法无法就是在外套的背部放置太阳能电池板等“伪高科技”。在鞋子中放置动能回收设备来回收能量似乎是个不错的想法,不过现在又有了新型的面料,它能挖掘出了我们人类通常不会喜欢的一种新的能量来源——静电。  这种新型面料是由韩国成均馆大学(Sungkyu

兰州化物所研发加固仿生自清洁硅基仿生材料

  出淤泥而不染的荷叶,捕虫高手猪笼草,科学家们研究仿生,利用自然界赋予的神奇功效为人类服务。然而,仿生“荷叶”和“猪笼草”却有一颗“玻璃心”,一旦受到外界触碰,“自清洁”功能也随即消失。  “我们要做可以应用的硅基仿生自清洁材料。”中科院兰州化学物理研究所甘肃省黏土矿物应用研究重点实验室张俊平研究

刘锦淮:仿生传感器研究将大大丰富人类的物质世界

  刘锦淮 博士,中科院合肥智能机械研究所研究员,博士生导师,长期以来主要从事纳米材料与器件、检测技术的研究。   人类能否发明某种装置,像鱼儿一样敏锐感知水中的细微扰动?或者学习蝴蝶,随着空气中化学成分的变化更改翅膀的色彩?   历经几十亿年的进化,生物界与自然的融合趋于完美。而模仿生物的

仿生机器吸力惊人

  鱼是自然界天生的“吸盘”。这种鳍刺类鱼类能够紧紧地附着在任何物体上,如船身、跳跃的海豚,甚至是人类潜水员身上。?鱼又名“亚口鱼”,它们的强大抓力来自于头上改良后的背鳍形成的吸盘。现在,科学家报告称,他们开发的一款机器吸盘可以做相同的事情。   像?鱼特殊的吸盘一样,这种“仿生?鱼盘”能够像真

中科大:类似猫头鹰羽毛的仿生结构制备有望实现

  壁虎能够爬墙是因为脚掌上的微纤毛可产生很强的黏附力,孔雀羽毛五彩斑斓是因为羽毛表面不同的微纤毛能反射不同波长的自然光。然而由于现有微纳米加工手段的缺陷,人类至今还很难有效制备出如此微小尺度的仿生功能结构和器件。中国科学技术大学的一项最新研究成果有望解决这一难题。  该校工程科学学院微纳加工研究团

什么是静摩擦和动摩擦及检测设备介绍

静摩擦系数是两物体有相对运动趋势,但还没有相对运动时的摩擦系数,当物体间有相对运动趋势,就是较大静摩擦力。动摩擦系数是当两物体有相对运动时的摩擦系数,必须是一个物体在另一个物体表面的相对运动。MXZ-01摩擦系数检测仪适用于测量塑料薄膜和薄片、橡胶、纸张、纸板、编织袋、织物风格、输送带、木材、涂层等

立式摩擦磨损试验机可做的摩擦试验

  摩擦磨损试验机的工作原理是试样的待磨层与摩擦纸,在荷重摩擦体的作用下,以规定的速度相互摩擦。通过测量摩擦前后密度的减少量(或涂层厚度的减少量),来判断墨层(或涂层)的耐磨性。   立式摩擦磨损试验机根据不同的用途配备不同的摩擦副可做不同的试验,下面简单介绍一下几个实例。   1、环盘摩擦:

摩擦磨损试验机摩擦系数计算公式

摩擦磨损试验机也分为摩擦试验机和磨损试验机。摩擦磨损试验机摩擦系数计算公式如下

中国科学家首次从壁虎中分离出抗肿瘤活性成分

天津肿瘤医院中西医结合科吴雄志博士带领的课题组首次从中药壁虎(又名守宫)中成功分离出抗肿瘤活性成分“守宫硫酸多糖”,发现其具有显著抑制肝癌细胞生长的特性。已获得国家发明ZL的这一创新性发现,有望成为控制肝癌生长的新手段。这项成果近日发表在《国际细胞生物学》杂志上。 原发性肝癌是我国目前常见的恶性肿瘤

摩擦力方法

涂层附着强度的检验方法有很多,如摩擦抛光试验,钢球滚光试验,粘接-剥离试验,锉刀试验,划线划格试验和划痕试验等,其中划痕试验是目前检验硬质涂层zui常用、zui好的一种检验方法。     划痕试验是用具有光滑园锥*的划针在逐渐增加载荷下刻划涂层表面,直至涂层被破坏,涂层破坏时所加的载荷称为临界载荷,

摩擦副的分类

1)、滑动摩擦:当一物体在另一物体表面上滑动时,在两物体接触面上产生的阻碍它们之间相对滑动的现象,谓之“滑动摩擦”。(2)、滚动摩擦:一物体在另一物体表面作无滑动的滚动或有滚动的趋势时,由于两物体在接触部分受压发生形变而产生的对滚动的阻碍作用,叫“滚动摩擦”。它的实质是静摩擦力。(3)、摩擦副:即相

超高摩擦电荷密度刷新摩擦纳米发电机性能纪录

  人们一直致力于研究在维持现代社会巨大能源消耗的同时最小化环境消耗。从可再生的自然源(如太阳能、风能和生物质能)收集能量,已经被证实是应对能源危机的可持续可供选择的方向,而且在化石燃料快速消耗的今天扮演着越来越重要的角色。最近发明的摩擦纳米发电机具有质量轻、价格低廉,甚至在低工作频率下仍然高效等先