薄膜材料能不能用AFM表征导电性能

可以测导电原子力C-AFM,电流图可以反映电导率......阅读全文

薄膜材料能不能用AFM表征导电性能

可以测导电原子力C-AFM,电流图可以反映电导率

薄膜材料能不能用AFM表征导电性能

可以测导电原子力C-AFM,电流图可以反映电导率

导电涂层的性能

导电涂层在锂电池中能够有效提高极片附着力,减少粘结剂的使用量,同时对于电池的电性能也有显着提升。国外的大公司产品就不介绍了,介绍一下国内唯一一家在市场上推广,并拥有自主知识产权的产品——WX112,由中兴新旗下的上海中兴派能能源科技有限公司研发和生产,从拿到的样品看,满涂、留边、留间隙等技术要求都可

AFM的电学性能测试

静电力EFM是从轻敲模式AFM发展而来的细分成像模式,可以对样品表面的电场分布进行扫描。它采用两次扫描的方法,第一次扫描(主扫描, Main Scan)采用轻敲模式获得表面形貌,第二次扫描(Interleave扫描,Interleave Scan)将探针抬起一定高度,并给探针施加一个偏压,利用第一次

AFM的电学性能测试

      静电力EFM是从轻敲模式AFM发展而来的细分成像模式,可以对样品表面的电场分布进行扫描。它采用两次扫描的方法,第一次扫描(主扫描, Main Scan)采用轻敲模式获得表面形貌,第二次扫描(Interleave扫描,Interleave Scan)将探针抬起一定高度,并给探针施加一个偏压

导电性原子力显微镜(CAFM)

导电性原子力显微镜(C-AFM)导电式原子力显微镜是外加一组电流放大器于显微镜,然后利用导电探针接触模式扫描样品,在取得高度讯号的同时,若是样品表面有电流产生,探针也会取得此电流讯号,因此我们可以利用Conductive AFM的扫描,同时得到扫描区域得高度形貌图及电流分布图像, 更可进一步的于特定

导电性能测定仪

导电性能测试仪,是测量碳素材料导电性能的专用仪器。该仪器采用高精度稳流源供电,电流、电压自动显示,并且稳定,准确,直观,方便。灵活的测试试样平台适用于不同直径和不同长度的试样的测试。该仪器可用来按ISO 11713-2000、YS/T63.2-2005和YS/T 64-1993标准方法测试阴极炭块、

偶联剂对炭黑导电涂料导电性能的影响

电涂料的导电性能主要与填料的导电性、含量、颗粒大小以及聚合物与填料颗粒的相容性等因素有关,炭黑颗粒越细,网状链堆积越紧密,比表面积就越大;单位质量颗粒多,就越有利于在基质中形成链式导电结构。在其它条件一定时,炭黑颗粒在聚合物中的分散状况将决定导电涂料的导电性能。炭黑颗粒达到纳米级时,比表面积很大,在

锂电池导电涂层性能介绍

导电涂层在锂电池中能够有效提高极片附着力,减少粘结剂的使用量,同时对于电池的电性能也有显著提升。国外的大公司产品就不介绍了,介绍一下国内唯一一家在市场上推广,并拥有自主知识产权的产品——WX112,由中兴新旗下的上海中兴派能能源科技有限公司研发和生产,从拿到的样品看,满涂、留边、留间隙等技术要求都可

导电高聚物正极材料的性能特点

导电高聚物正极材料锂离子电池中,除了可以用金属氧化物作为其正极材料外,导电聚合物也可以用作锂离子电池正极材料。

锂电池导电涂层的性能介绍

1. 接触电阻下降40%2. 胶黏剂用量降低50%3. 同倍率下,电池电压平台提升20%4. 材料与集流体附着力提高30%,经过长期循环不会有脱层现象

电池材料中的导电涂层性能介绍

利用功能涂层对电池导电基材进行表面处理是一项突破性的技术创新,覆碳铝箔/铜箔就是将分散好的纳米导电石墨和碳包覆粒,均匀、细腻地涂覆在铝箔/铜箔上。它能提供极佳的静态导电性能,收集活性物质的微电流,从而可以大幅度降低正/负极材料和集流之间的接触电阻,并能提高两者之间的附着能力,可减少粘结剂的使用量,进

新型打印技术所得薄膜导电性能优异

  本报讯据物理学家组织网6月2日报道,美国科学家设计出了一种新的打印过程,不仅比传统方法更迅捷,而且适用于多种有机材料,得到的有机半导体薄膜的性能也要优异10倍。研究人员在最新一期的《自然·材料学》杂志上表示,最新进展有望引领有机电子设备领域的新变革。   有机电子设备可以广泛应用于多个领域,但

富勒烯材料导电性能极大提升

  《自然》杂志1月18日(北京时间)发表了美国密歇根大学开发的一种新方法,诱导电子在有机材料富勒烯中“穿行”,距离远远超过此前认为的极限。这项研究提升了有机材料应用于太阳能电池和半导体制造的潜力,或将改变相关行业游戏规则。  与当今广泛应用的无机太阳能电池不同,有机物可以制成便宜的柔性碳基材料,如

简述涂碳铝箔/铜箔(导电涂层)的性能优势

  1.显著提高电池组使用一致性,大幅降低电池组成本。如:  · 明显降低电芯动态内阻增幅 ;  · 提高电池组的压差一致性 ;  · 延长电池组寿命 ;· 大幅降低电池组成本。  2.提高活性材料和集流体的粘接附着力,降低极片制造成本。如:  · 改善使用水性体系的正极材料和集电极的附着力;  ·

高性能导电钙钛矿量子点固体薄膜制成

记者22日从南开大学化学学院获悉,该院袁明鉴研究员、陈军院士带领的科研团队与加拿大多伦多大学爱德华·萨金特教授课题组合作,围绕高性能半导体量子点固体合成中面临的关键科学问题,发展了高性能导电钙钛矿量子点固体薄膜制备全新策略,实现了多材料、跨尺寸的钙钛矿三原色电致发光器件的可控构筑。相关研究成果近日发

原子力显微镜(AFM)探针技术简介和展望

一.  原子力显微镜(AFM)简介二.  AFM探针分类三.AFM探针生产、销售资讯四.展望 一.  原子力显微镜(AFM)简介      原子力显微镜(atomic force microscope, AFM)是一种具有原子分辨率的表面形貌、电磁性能分析的重要仪器。1981年,STM(scan

扫描探针显微镜对几种纳米材料的结构表征研究

     1982年,Gerd Binning及其合作者在IBM公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(scanning tunneling microscope,STM),其发明人Binning 因此获得1986 年的诺贝尔物理奖。扫描隧道显微镜的工作原理是:当探针与样品表面间距小到纳

锂电池正极材料导电涂层涂碳铝箔的性能优势

  1、显著提高电池组使用一致性,大幅降低电池组成本。  (1)明显降低电芯动态内阻增幅。  (2)提高电池组的压差一致性。  (3)延长电池组寿命,大幅降低电池组成本。  2、提高活性材料和集流体的粘接附着力,降低极片制造成本。  (1)改善使用水性体系的正极材料和集电极的附着力;  (2) 改善

AFM简谈

原子力显微镜(AFM)虽然名字里有“显微镜”三个字,但它并不像光学显微镜和电子显微镜那样能“看”微观下的物体,而是通过一根小小的探针来间接地感知物体表面的结构,得到样品表面的三维形貌图象,并可对三维形貌图象进行粗糙度计算、厚AFM主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品

AFM检测技术

      原子力显微镜(Atomic Forcc Microscopc,AFM),也称扫描力显微镜(scanning FOrccMicroscopc,sFM),是一种纳米级高分辨的扫描探针显微镜,优于光学衍射极限1000倍。 ADM811原子力显微镜是由IBM公司苏黎世研究中心的格尔德・宾宁与斯福

AFM曲线测量

曲线测量SFM除了形貌测量之外,还能测量力对探针-Zt(Zs)。它几乎包含了所有关于样品和针尖间相互作用的必要信息。当微悬臂固定端被垂直接近,然后离开样品表面时,微悬臂和样品间产生了相对移动。而在这个过程中微悬臂自由端的探针也在接近、甚至压入样品表面,然后脱离,此时原子力显微镜/AFM测量并记录了探

AFM应用实例

应用实例1.应用于纸张质量检验。 2.应用于陶瓷膜表面形貌分析。 3.评定材料纳米尺度表面形貌特征陶瓷膜表面形貌的三维图象

AFM力学测量

力学测量在纳米材料和器件的诸多性质中,力学性质不仅面广而且也是评价纳米材料和器件的主要指标,是纳米材料和器件得以真正应用的关键。目前关于AFM的微纳米力学研究,已在纳米材料力学性质、纳米摩擦等领域取得了较大进展。在AFM接触模式下,研究样品材料微纳尺度内的形貌和力学性质(包括杨氏模量、硬度、粘弹性、

AFM光学测量

光学测量突破光学衍射极限实现纳米级的光学成像与探测,一直是光学技术发展的前沿。2014 年诺贝尔化学奖授予了突破光学衍射极限的超分辨光学显微成像技术,包括受激发射损耗显微术、光敏定位显微术、随机光学重建显微术、饱和结构照明显微技术等。将AFM与光学技术结合起来,可以研究微纳米尺度下的光学现象和进行光

AFM应用实例

应用实例   1.应用于纸张质量检验。 2.应用于陶瓷膜表面形貌分析。 3.评定材料纳米尺度表面形貌特征  原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而

AFM相移模式

相移模式(相位移模式)作为轻敲模式的一项重要的扩展技术,相移模式(相位移模式)是通过检测驱动微悬臂探针振动的信号源的相位角与微悬臂探针实际振动的相位角之差(即两者的相移)的变化来成像。引起该相移的因素很多,如样品的组分、硬度、粘弹性质等。因此利用相移模式(相位移模式),可以在纳米尺度上获得样品表面局

AFM的介绍

AFM全称Atomic Force Microscope,即原子力显微镜,它是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现

AFM磁学测量

磁学测量磁性纳米结构和材料在高密度磁存储、自旋电子学等领域有着广泛的应用前景,高空间分辨的磁成像和磁测量技术将有利于推动磁性纳米结构和材料的研究。基于扫描探针及其相关技术,发展出一系列纳米磁性成像与测量的技术和方法,包括磁力显微术、磁交换力显微术、扫描霍尔显微术、扫描超导量子干涉器件显微术、扫描磁共