薄膜材料能不能用AFM表征导电性能

可以测导电原子力C-AFM,电流图可以反映电导率......阅读全文

快速AFM-技术

快速AFM 技术通常的AFM扫描速度较慢,不能满足许多动态现象的研究需求,快速AFM 技术(high speed AFM,HS-AFM)的核心限制因素是微悬臂探针的自然带宽,其在真空、大气及液体环境下分别是几赫兹,几千赫兹和几万赫兹。因此,在液体环境下更容易实现HS-AFM,但还需要具有高带宽(兆赫

AFM应用举例

 AFM应用举例由于原子力显微镜对所分析样品的导电性无要求,因此使其在诸多材料领域中得到了广泛应用。透明导电的ITO薄膜,随着成膜方法、膜厚、基底温度等成膜条件变化,而表面形貌不同。将膜厚120nm(左)与450nm(右)的ITO薄膜进行比较时,随着膜厚的增加,每个结晶颗粒明显地长大。另外,明显地观

AFM电学测量

电学测量如果微悬臂是用导电材料制成或外层镀有导电金属层,则探针可作为一个移动电极来施加电压和探测电流,从而来研究材料的微区电学性质,该技术通常称为导电原子力显微术(conductive-AFM,C-AFM)。利用导电原子力显微术可以探测样品的表面电荷、表面电势、表面电阻、微区导电性、微区介电特性、非

AFM热学测量

热学测量目前,微纳米尺度下的热物性研究受到了极大的挑战:一方面,许多热物性的基础概念性问题不清楚,如微观尺度下非平衡态的温度如何定义等;另一方面,传统测试系统由于自身精度限制,很多热物性参数都无法直接测量,因此,无论是微纳尺度下热传导等的理论机制研究,还是微纳电子学和能源器件中的热传导、热耗散、热转

AFM应用实例

应用实例1.应用于纸张质量检验。 2.应用于陶瓷膜表面形貌分析。 3.评定材料纳米尺度表面形貌特征陶瓷膜表面形貌的三维图象

AFM简谈

原子力显微镜(AFM)虽然名字里有“显微镜”三个字,但它并不像光学显微镜和电子显微镜那样能“看”微观下的物体,而是通过一根小小的探针来间接地感知物体表面的结构,得到样品表面的三维形貌图象,并可对三维形貌图象进行粗糙度计算、厚AFM主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品

什么是AFM

明。AFM 是一種類似於STM 的顯微技術,它的許多元件和STM是共同的,如用於三 維掃描的電壓陶瓷系統以及反饋控制器等。它和STM 最大的不同是用一個對微弱作用 力極其敏感的微懸臂針尖代替了STM 的隧道針尖,並以探測原子間的微小作用力(Van der Walls’ Force)代替了STM 的微

AFM光学测量

光学测量突破光学衍射极限实现纳米级的光学成像与探测,一直是光学技术发展的前沿。2014 年诺贝尔化学奖授予了突破光学衍射极限的超分辨光学显微成像技术,包括受激发射损耗显微术、光敏定位显微术、随机光学重建显微术、饱和结构照明显微技术等。将AFM与光学技术结合起来,可以研究微纳米尺度下的光学现象和进行光

AFM磁学测量

磁学测量磁性纳米结构和材料在高密度磁存储、自旋电子学等领域有着广泛的应用前景,高空间分辨的磁成像和磁测量技术将有利于推动磁性纳米结构和材料的研究。基于扫描探针及其相关技术,发展出一系列纳米磁性成像与测量的技术和方法,包括磁力显微术、磁交换力显微术、扫描霍尔显微术、扫描超导量子干涉器件显微术、扫描磁共

日本团队合成较高性能质子导电性化合物

  据九州大学官网报道,该校山崎仁丈教授等开发出了能预测质子传导性电解质材料的人工智能(AI)模型,然后仅通过一次实验就发现了较高性能的新型质子导电性电解质。这是将实验研究和数据科学相互融合基础上获得的一项成果。  该团队一直致力于固体氧化物燃料电池(SOFC)的电解质材料研究,并将目标聚焦于在35

银纳米线透明导电薄膜制备及加热器性能调控实现

  近期,中国科学院合肥物质科学研究院固体物理研究所研究人员在制备超高长径比银纳米线方面发现了一种简易的新方法,并在所获得高品质银纳米线材料的基础上,制备了光/电性能优异的透明导电薄膜,并将其应用于透明加热器,成功实现了加热器加热温度、响应时间等性能的调控。  银纳米线作为新型透明导电薄膜材料而被广

AFM在二维材料研究中的应用

AFM在二维材料研究中的应用新型二维材料自2004年石墨烯被发现以来,探寻其他新型二维晶体材料一直是二维材料研究领域的前沿。正如石墨烯一样,大尺寸高质量的其他二维晶体不仅对于探索二维极限下新的物理现象和性能非常重要,而且在电子、光电子等领域具有诸多新奇的应用。原子力显微镜(AFM)一直被广泛用于二维

新合成三维材料具有超强导电性能-可替代石墨烯

图片描绘了在砷化镉内部高速移动的电子  “足球比赛需要替补,材料也一样。”日前多个国际研究团队先后发表论文称,合成出一种能够替代石墨烯的三维材料。据称这种材料的电气性能与石墨烯相当,且更便于生产,有望借此制造出运行速度更快的晶体管、传感器和透明电极。  石墨烯可谓是材料界当红巨星,各种美誉不绝于耳,

AFM的原理及在高分子材料表征中的用途

1、1986年第一台原子力显微镜(Atomic Force Microscope, AFM)诞生,弥补了扫描隧道显微镜(STM)不能观测非导电样品的缺陷。2、AFM基本原理:原子力显微镜是将一个队微弱力极敏感的微悬臂一端固定,另一端有一个微小的针尖,其尖端原子与样品表面原子间存在及极微弱的排斥力,利

原子力显微镜的针尖对薄膜样品表面是否有损伤

XRD、SEM和AFM测试没有固定的先后顺序。1 XRD(X-ray diffraction)是用来获得材料的成分、材料内部原子或分子的结构。2 SEM(扫描电子显微镜)是一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。3 AFM (原子力显微镜)是一种表面观测仪器,与扫描隧道显

薄膜样品做XRD、SEM和原子力显微镜测试的先后顺序?

XRD、SEM和AFM测试没有固定的先后顺序。1 XRD(X-ray diffraction)是用来获得材料的成分、材料内部原子或分子的结构。2 SEM(扫描电子显微镜)是一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。3 AFM (原子力显微镜)是一种表面观测仪器,与扫描隧道显

AFM的接触模式

  接触模式  在接触模式中,针尖始终与样品保持轻微接触,以恒高或恒力的模式进行扫描。扫描过程中,针尖在样品表面滑动。通常情况下,接触模式都可以产生稳定的、高分辨率的图像。  在接触模式中,如果扫描软样品的时候,样品表面由于和针尖直接接触,有可能造成样品的损伤。如果为了保护样品,在扫描过程中将样品和

AFM力检测部分

仪器结构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。力检测部分在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的

AFM反馈系统

反馈系统在原子力显微镜/AFM的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料,当

AFM测半导体

半导体加工通常需要测量高纵横比结构,像沟槽和孔洞,确定刻蚀深度。然而如此信息用SEM 技术是无法直接得到的,除非将样品沿截面切开。AFM 技术则恰恰弥补了SEM 的这一不足,它只扫描试样的表面即可得到高度信息,且测量是无损的,半导体材料在测量后即可返回到生产线。AFM 不仅可以直观地看到光栅的形貌,

AFM解决的问题

尖和物体表面之间的作用力是十分微弱的,我们该如何有效测量它的大小呢?这个时候前面提到的悬臂就派上用场了。由于针尖和悬臂是连在一起的,针尖受到的力会导致悬臂发生弯曲,受力越大,悬臂弯曲的越厉害。这样,通过测量悬臂弯曲的程度,我们就可以知道针尖与物体表面之间的作用力的大小。但是悬臂由于受力而发生的弯曲依

AFM位置检测部分

位置检测部分在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信

AFM的工作原理

AFM的工作原理  AFM的基本原理与STM类似,在AFM中,使用对微弱力非常敏感的弹性悬臂上的针尖对样品表面作光栅式扫描。当针尖和样品表面的距离非常接近时,针尖尖端的原子与样品表面的原子之间存在极微弱的作用力(10-12~10-6N),此时,微悬臂就会发生微小的弹性形变。针尖与样品之间的力F与微悬

AFM驱动控制方式

驱动控制方式XY轴扫描运动:需要四通道分别对四个区域进行双极性驱动。Z轴扫描运动:需要对外部四个区域加载正电压,内部接地或者内部加负电压(内壁不可以加正电压)。我们推荐采用我公司模块化E01系列双极性压电控制器产品,具有模块化组合,多通道输出,分辨率高、纹波小等优点,可以满足AFM原子力显微镜对压电

AFM反馈系统

反馈系统在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。