植物细胞内一类免疫受体作为钙离子通道调控免疫

2021年6月17日,美国北卡大学Jeff Dangl实验室、中科院分子植物科学卓越创新中心万里研究组和美国杜克大学裴真明实验室合作在Science发表了题为 Plant “helper” immune receptors are Ca2+-permeable non-selective cation channels 的研究长文,揭示了植物细胞内一类免疫受体作为钙离子通道调控免疫的分子机理。 植物免疫系统识别病原微生物并激活免疫反应,限制病原菌侵染。NB-LRR(NLR)蛋白是植物细胞内主要的免疫受体,通过识别病原微生物效应蛋白引发免疫反应和细胞程序性死亡。植物的 NLR 根据其 N 端的信号转导结构域可以分为三类: TIR-NB-LRR (TNL)、 CC-NB-LRR (CNL)和CCR-NB-LRR (RNL)。TNL和CNL识别病原菌效应蛋白,RNL不直接识别病原菌效应蛋白,而是作用于 TNL 和 CNL下游......阅读全文

钙的用途

  金属钙最大的用途是炼钢,因为它对氧和硫有很强的化学亲和力。其氧化物和硫化物一旦形成,就会以液态铝酸钙和硫化物夹杂物的形式在钢中漂浮;处理后,这些夹杂物分散在整个钢中并变成小球形,提高了钢的铸造性、洁净度和一般机械性能。钙也用于免维护汽车电池,使用0.1%的钙铅合金代替通常的锑铅合金可降低水损耗和

钙的历史

  人们了解钙化合物已有上千年的历史,尽管它们的化学组成直到17世纪才为人所知。在公元前7000年,石灰就被用作建筑和雕像的材料[23] [24]。第一座有年代记载的石灰窑可追溯到公元前2500年,发现于美索不达米亚的卡法贾[25][26] 。大约同一时期,脱水石膏(CaSO42H2O) 被用作建造

钙的分类

  钙是一种延展性很强的银色金属(有时被描述为浅黄色),其性质与其主族较重的元素锶、钡和镭非常相似。一个钙原子有二十个电子,排列成电子构型[Ar]4s2。和元素周期表第2族中的其他元素一样,钙在最外层的s轨道上有两个价电子,且很容易在化学反应中失去,形成具有惰性气体电子结构的稳定的二价正离子。因此,

激光共聚扫描显微镜的应用领域简介

  激光共聚焦显微镜系统应用领域:  涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。  应用范围:  细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网

中科院发表离子通道研究新成果

  双受精是开花植物特有的一种繁殖方式。在授粉过程中,花粉管通过接收和应答胚珠分泌的多种引诱物质将一对精细胞送入胚珠。其中一个精细胞与卵细胞融合产生合子,另一个与中央细胞融合产生胚乳。  已知花粉管导向需要花粉管顶部的钙离子梯度,而钙离子通道是调控钙离子梯度的核心,因此钙离子通道是花粉管导向的关键元

德国“洪堡教授”柴继杰全职加入西湖大学

原文地址:http://news.sciencenet.cn/htmlnews/2023/8/506215.shtm 知名结构生物学家、德国洪堡教席奖获得者柴继杰教授,近日正式加入西湖大学,受聘为植物免疫学讲席教授、博士生导师。   ? 柴继杰,1966年生,先后毕业于

Nature开创性成果:信号激活,三步走

  当动物和植物受到如细菌攻击、气味和寒冷等影响时,钙离子会流入细胞。钙向细胞提供信号告知其细胞外正在发生什么,然而由于高浓度的钙对细胞是有毒的,它必须被再度快速泵出。来自哥本哈根大学和奥尔胡斯大学丹麦国家研究基金PUMPkin中心的研究人员现在证明细胞外膜上的钙泵非常精确地调整了泵速来适应钙浓度。

维生素D的简介

  维生素D(简称VD)是一种脂溶性维生素,乃环戊烷多氢菲类化合物,一组结构上与固醇有关,功能上可防止佝偻病的维生素,最主要的是维生素D3与D2。前者由人皮下的7-脱氢胆固醇经紫外线照射而成。后者由植物或酵母中含有的麦角固醇经紫外线照射而成。维生素D的主要功用是促进小肠粘膜细胞对钙和磷的吸收。肠中钙

酸土植物的生长特点

酸土植物的最适生境中的土壤pH都在6.0以下。砖红壤、红壤和黄壤(即铁铝土)等富铝化土壤中含有大量铝、锰、铁。一般植物若吸入这些元素的高价阳离子(如Fe3+)便与原生质牢牢结合,使原生质失去代换能力并脱水凝析。但酸土植物不仅对这些毒害具有很强的抗御力,还能在体内积蓄储存。酸土植物能够忍受氮和多种矿质

科学家揭示植物免疫系统协同御敌新机制

  植物在生长发育过程中,会不时面临着复杂恶劣的环境挑战,其中包括来自于各种病原微生物(例如细菌、真菌和卵菌等)的攻击。由病原微生物侵染导致的植物病害是自然生态系统和现代农业生产的一大危害,这给全球粮食安全带来了巨大挑战。 植物在与病原菌长期“博弈”的过程中,进化出了免疫系统。植物通过细胞膜表面

研究揭示植物感病的遗传基础和免疫抑制机制

近日,西北农林科技大学农学院单卫星教授课题组以疫霉致病关键的效应蛋白为切入点,揭示了植物感病的遗传基础和免疫抑制的机制,该研究成果发表于New Phytologist上。研究发现蛋白抗坏血酸过氧化物酶NbAPX3-1主要在过氧化物酶体发挥功能,是植物免疫的正向调控因子,其活性氧(ROS)清除活性对免

Trends综述:植物疫苗,癌症免疫疗法的又一“潜力股”

  近年来,免疫疗法已经成为癌症治疗的“实力干将”,是抗癌史上继手术、放化疗之后的又一变革。其中,除了细胞治疗(CAR-T等)、免疫检查点抑制(Anti-CTLA-4、Anti-PD-1/PD-L1等),癌症疫苗是当下免疫治疗的一个热门方向。科学家们希望能够利用疫苗引发特异性抗肿瘤免疫反应,实现治疗

研究揭示植物感病的遗传基础和免疫抑制机制

近日,西北农林科技大学农学院单卫星教授课题组以疫霉致病关键的效应蛋白为切入点,揭示了植物感病的遗传基础和免疫抑制的机制,该研究成果发表于New Phytologist上。研究发现蛋白抗坏血酸过氧化物酶NbAPX3-1主要在过氧化物酶体发挥功能,是植物免疫的正向调控因子,其活性氧(ROS)清除活性对免

上海生科院合作发现植物免疫反应新的信号传递途径

  11月20日,中国科学院上海生命科学研究院上海植物逆境生物学研究中心王水副研究员和美国杜克大学董欣年教授实验室合作在Cell Host & Microbe在线发表了植物免疫反应的一个新的信号传递途径。这一新的发现不仅将细胞周期和植物免疫两个最基本的生命现象联系起来,而且为深入地研究和调控植物的免

高温抑制植物免疫但促进开花的传代记忆表观遗传机制

  2月18日,Cell Research 杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究组与中国科学院遗传与发育生物学研究所曹晓风研究组合作完成的研究论文,题目为An H3K27me3 demethylase-HSFA2 regulatory loop orches

遗传发育所在植物先天免疫机制研究中取得新进展

  植物为了抵御病原菌的入侵,在长期的进化中,形成了十分复杂的免疫系统, 包括基础抗性和抗病基因介导的抗性两个层次。基础抗性属于第一层次的植物天然免疫,通常由植物表面的受体(PRRs)对病原相关分子模式(PAMPs)进行识别后引发,具有相对广谱、稳定和持久的特点。病原相关分子模式是许多

微生物所揭示气孔在植物免疫中的新功能

  气孔是由一对保卫细胞构成的植物叶表皮上的开孔,可响应环境因子刺激控制植物气体交换和水分蒸腾。作为植物表面的天然开孔,气孔也是许多病原菌入侵的通道。然而,植物可以主动关闭气孔来阻止病原菌的入侵,这一抗病过程被称为气孔免疫。但气孔在植物,特别是单子叶植物中是否还以其它的方式参与抗病免疫仍不清楚。最近

遗传发育所在茉莉酸调控植物免疫机制研究中获进展

  以拟南芥为模式进行的研究表明,basic helix-loop-helix (bHLH) 类型的转录因子MYC2是茉莉酸信号转导途径的核心调控元件。在茉莉酸信号转导过程中,MYC2既作为转录激活因子正向调控早期受伤反应相关基因的表达,又作为转录抑制因子负向调控晚期抗病反应相关基因的表达,但对于M

高温抑制植物免疫但促进开花的传代记忆表观遗传机制

  2月18日,Cell Research 杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究组与中国科学院遗传与发育生物学研究所曹晓风研究组合作完成的研究论文,题目为An H3K27me3 demethylase-HSFA2 regulatory loop orches

病原菌效应蛋白阻断植物免疫信号的新机制

  病原微生物在侵染植物过程中,需要分泌效应蛋白,干扰宿主细胞活动,以利于病原微生物的侵染和定殖。但是植物通过进化,能够识别监控效应蛋白在宿主细胞内的生化活性,从而激活免疫反应。效应蛋白因此会“背叛”病原微生物,导致宿主产生抗病性。  中国科学院遗传与发育生物学研究所周俭民研究组发现,丁香假单胞菌效

遗传发育所植物天然免疫机制合作研究取得重要突破

  植物通过细胞表面免疫受体和胞内免疫受体感受来源于病原微生物的分子,激活天然免疫,抵御病原物的侵染;而病原细菌通过向植物细胞分泌效应蛋白,干扰后者的细胞活动,增加其感染能力。大部分效应蛋白的生化功能和分子机制并不清楚,研究这些效应蛋白在宿主体内的靶蛋白和作用机制,将有助于我们深入理

植物多层次免疫和防御机制研究新进展

  植物时刻面临多种微生物的侵染威胁,在与微生物长期的相互作用中形成多层次的防御机制。一些病原微生物通过多种策略克服植物多层次的免疫机制,引发病害。农作物病虫害导致的全球主要粮食作物的产量损失较大,威胁粮食安全。为减少农作物病虫害发生,化学农药的施用给环境带来负担,威胁人类健康。深入理解植物免疫机制

技术生物所植物离子辐射远程时间效应研究取得新进展

  低能离子对生物组织的穿透深度较小,其诱变机制一直是大家关注的焦点。中科院合肥物质科学研究院技术生物与农业工程研究所科研人员证实植物个体中存在辐射远程(诱变)效应,从一个新的角度解释了低能离子的诱变机理(Radiation Research, 2007, 2008, 2010)。为进

非损伤性扫描离子选择电极技术及其在高等植物...(二)

1 SIET 原理1.1物理学及数学基础物质在液体环境中有从高浓度到低浓度扩散的趋势.对于带电粒子而言,还有从高电化学电势到低的电化学电势运动的趋势.如果,离子电极的移动距离dx在几十微米以下,生物材料实验证明,影响带电粒子运动的电化学电势的梯度可以忽略不计,那么,该离子的扩散运动速率可以通过Fic

非损伤性扫描离子选择电极技术及其在高等植物...(三)

图3 H+和O2 流动速率的同时测量.(a)显微照片显示金属氧电极与玻璃H+电极同时测量百合花粉管生长过程中H+离子和O2分子进出的变化;(b)在花粉管线粒体密集区域, 或称固有碱化带区域,同时存在的H+外流和O2内流现象.  2.2 SIET与荧光显微技术结合证明磷脂酰肌醇转运蛋白与根毛发生有

非损伤性扫描离子选择电极技术及其在高等植物...(一)

非损伤性扫描离子选择电极技术及其在高等植物研究中的应用印莉萍1    上官宇2    许越2 * 1.    首都师范大学生命科学学院, 北京 100037; 2.Younger USA Company, P.O. Box 37106, Raleigh, NC 27627 USA;) 摘要  各种分

研究发现纳米银植物毒性并非只是由释放银离子引起

  在中国科学院公派出国留学计划项目资助下,武汉植物园水生植物生物学学科组尹黎燕副研究员与美国杜克大学生物系、纳米环境效应研究中心开展了合作研究,在“纳米银对植物的生物效应”的合作研究中发现:纳米银的植物毒性与其本身固有的特性相关,并非只是由释放银离子引起。  新型纳米材料的广泛使用

土壤酸碱度对植物生长的影响分析(二)

3.单一营养液植物生长试验  为证实上述原理,用小麦进行了单种物质营养液植物生长试验。以鉴别在不同酸碱环境下,矿物的吸收以及对溶液的影响。  配置硫酸氨(NH4)2SO4(阳离子)、硝酸钙Ca(NO3)2(阴离子更容易被吸收)、硝酸氨NH4NO3(阴阳离子吸收基本平均)。三种单物质营养液并分为三组进

科普:植物如何传递虫害信息

   日本埼玉大学研究人员最新发现,植物的叶片遭到虫害时会分泌谷氨酸,将信息迅速传递到其他叶片,促使植物体内合成抗虫物质。 先前研究发现,植物遭遇虫害时能在短时间内将信息传递出去,但植物并不具备类似动物的大脑和神经系统,它们究竟如何感知伤害并传递信息一直不得而知。 埼玉大学研究人员为最常见的

细胞核内钙信号可改变T细胞应答有助开发免疫抑制疗法

  组成免疫系统的免疫细胞可以区分“自己”和“非己”的蛋白分子。比如,如果我们暴露于细菌或病毒等病原体,而这些病原体表面带有外来分子,机体就会做出免疫应答。相比之下,免疫细胞会对机体自身的分子产生耐受。这种不应答状态或者称为无反应性受到一个钙控开关的调节,之前研究报道这种钙信号开关参与许多脑部功能的