马赫曾德尔干涉仪的特点简介

准直光源会形成非局域条纹图案;延伸光源会形成局域条纹图案。仔细调整镜子与分束器的取向,即可使干涉条纹形成于指定局域位置。对于大多数案例,通过调整的动作,可使干涉条纹形成的平面与检验物体同面,这样,两者可以一起成像。 马曾干涉仪的内部工作空间相当宽广,干涉条纹的形成位置有很多种选择,因此,它是观察在风洞里气体流动的佳选。对于一般流动可视化研究,也是很好选择。它时常被用于空气动力学、等离子物理学与传热学领域,可以测量气体的压强、密度和温度的变化。 马曾干涉仪时常被用来研究量子纠缠──量子力学的最反直觉的预测之一。......阅读全文

马赫曾德尔干涉仪的特点简介

  准直光源会形成非局域条纹图案;延伸光源会形成局域条纹图案。仔细调整镜子与分束器的取向,即可使干涉条纹形成于指定局域位置。对于大多数案例,通过调整的动作,可使干涉条纹形成的平面与检验物体同面,这样,两者可以一起成像。  马曾干涉仪的内部工作空间相当宽广,干涉条纹的形成位置有很多种选择,因此,它是观

马赫曾德尔干涉仪简介

  马赫-曾德尔干涉仪(Mach–Zehnder interferometer)是一种干涉仪,可以用来观测从单独光源发射的光束分裂成两道准直光束之后,经过不同路径与介质所产生的相对相移变化。这仪器是因德国物理学者路德维希·马赫(恩斯特·马赫之子)和路德维·曾德尔而命名。曾德尔首先于1891年提出这构

马赫曾德干涉仪的历史简介

  1802年,托马斯·杨在英国皇家学会讲演时,引用自己所做的双孔(双缝)干涉实验。他说:“为使这两部分光在屏幕上引起的效果叠加起来,需要使来自同一光源、经过不同路径的光到达同一区域,而不使其相离散,如有离散,也能根据回折、反射或折射把光从一方或从两方重合起来,将它们的效果叠加。但是,最简单的办法是

马赫曾德干涉仪干涉原理简介

  马赫—曾德干涉仪由于不带有纤端反射镜,需要增加一个3dB分路器,如下图。光源发出的相干光经3dB分路器分为光强1:1的两束光分别进入信号臂光纤和参考臂光纤,两束光经第二个3dB分路器汇合相干形成干涉条纹。M—Z干涉仪的优点是不带纤端反射镜,克服了迈克耳逊干涉仪回波干扰的缺点,因而在光纤传感技术领

马赫曾德尔干涉仪的结构和应用

  仪器内构  一道准直光束被第一块半镀银镜分裂成两道光束,称为“样品光束”与“参考光束”。这两道光束分别被两块镜子反射后,又通过同样的第二块半镀银镜,然后进入检测器。  除了最后一块半镀银镜以外,所有全镀银镜与半镀银镜的表面都是面对入射光束。最后一块半镀银镜的表面是面对透射过第一块半镀银镜的光束。

马赫曾德干涉仪相关介绍

  马赫——曾德干涉仪(Mach-Zehnder; inter-ferometer)是用分振幅法产生双 光束以实现干涉的仪器  1800年,托马斯·杨发表了《在声和光方面的实验与问题》的论文,认为光与声都是波,光是以太介质中传播的纵振动,不同颜色的光与不同频率的声音是相类似的。他在分析了水波的叠加现

针对马赫曾德干涉仪实验分析

  第一个实验将木板套窗打开一个孔,在上面糊上一张厚纸,在厚纸上用针尖钻个孔,为了观察方便起见,在木板套窗外的一个适当位置放一个小镜子,从那里反射的太阳光按水平方向射到对面的墙壁上,并且将1/30英寸细长纸片插入太阳光中观察。映在墙壁上或放在各种不同距离上的其它厚纸的影子,除了阴影的两侧边缘之外,那

关于马赫曾德干涉仪干涉原理简述

  托马斯·杨用红光照射双孔,观察通过双孔后的光在屏幕上形成的光带。他遮住一个针孔时,屏上只有一个红的光强均匀的光点;当两个孔均不遮掩时,屏上两个光点重合区出现了红黑交替的光带,红带相当明亮,其宽度相等,同时,各黑带的宽度也相等,并且等于红带的宽度。  根据各种实验比较,组成极端红光的波长,在空气中

马赫秦特干涉仪概述

  一种分振幅双光束干涉仪。由马赫和秦特在1892年研制而成。这种干涉仪的原理如图所示。D1和D2为两块分光板,M1和M2为两块平面镜,这四个反射面接近平行,而且它们的中心分别位于一个平行四边形的四个顶点。单色点光源S位于准直透镜L1的前焦面上,S发出的光通过L1后成为平行光,在D1的前表面分成反射

马曾干涉仪的概述

  马曾干涉仪的内部设置可以很容易更改。与迈克耳孙干涉仪明显不同,两道被分裂的光束只会分别行经一次马曾干涉仪的两条严格分隔的路径。  由于白光的相干长度很有限,数量级为微米,必须非常仔细的将白光的所有波长的光程都调整为一样,才能通过马曾干涉仪将白光制成黑白相间的干涉条纹,否则无法观察到干涉条纹。如首

干涉仪式调制器原理介绍

电光调制器(EOM)是利用某些电光晶体,如铌酸锂(LiNbO3)、砷化镓(GaAs)和钽酸锂(LiTaO3)的电光效应而制成的。电光调制是基于线性电光效应(普尔克效应)即光波导的折射率正比于外加电场变化的效应。电光效应导致的相位调制器中光波导折射率的线性变化,使通过该波导的光波有了相位移动,从而实现

什么是相干光通信?(二)

I/Q调制在下图用极坐标描述,这里,I为in-phase同相或实部,Q为quadrature正交相位或虚部,如图(6)所示蓝色矢量端点的位置对应一个点 (也称为“星座点”)在这个图中(这被称为“星座图”),这个点其实就是振幅E和相位Ф的一对组合。 图(6)   I/Q调制听起来有个蛮高大上的名字,那

关于利德尔综合征的简介

  假性醛固酮增多症(pseudo-hyperaldosteronism,PHA)又称Liddle综合征、肾潴钠过多综合征、先天性肾小管失钾症、低肾素性高血压综合征、假性盐皮质类固醇过多症,是以严重高血压、低钾血症、代谢性碱中毒、低肾素血症但无醛固酮增多为特征的肾小管疾病,属遗传性疾病,为常染色体显

治疗利德尔综合征的简介

  假性醛固酮增多症对限盐和钠通道阻滞剂(保钾利尿药)敏感,保钾利尿药氨苯蝶啶、阿米洛利疗效好,可直接抑制远曲小管和集合管腔膜ENaC,抑制Na+重吸收,使尿钠增加,尿钾减少。严格的限盐或中度限盐加保钾利尿剂可使血压恢复正常,且恢复血浆肾素和醛固酮的水平。  噻嗪类利尿剂也可有效地治疗假性醛固酮增多

MZ干涉仪式调制器原理介绍

电光调制器(EOM)是利用某些电光晶体,如铌酸锂(LiNbO3)、砷化镓(GaAs)和钽酸锂(LiTaO3)的电光效应而制成的。电光调制是基于线性电光效应(普尔克效应)即光波导的折射率正比于外加电场变化的效应。电光效应导致的相位调制器中光波导折射率的线性变化,使通过该波导的光波有了相位移动,从而实现

干涉仪的简介

  干涉仪是很广泛的一类实验技术的总称, 其思想在于利用波的叠加性来获取波的相位信息, 从而获得实验所关心的物理量。干涉仪并不仅仅局限于光干涉仪。 干涉仪在天文学 (Thompson et al, 2001), 光学, 工程测量, 海洋学, 地震学, 波谱分析, 量子物理实验, 遥感, 雷达等等精密

关于光学干涉仪的历史故事

  1704年 ,牛顿的《光学》一书问世,在本书中牛顿认为,光是沿直线高速传播的粒子流。而此种观点恰好同同期的物理学家惠更斯的猜想所不同。  1690年 ,惠更斯的《论光》一书正式出版,本书中惠更斯认为光是一种波,并提出了光波动原理,即惠更斯原理。  此原理可以阐述为:任何时刻一个点波源的球面波面上

外差干涉仪简介

  又称双频干涉仪或交流干涉仪。是使用两种不同频率的单色光作为测量光束和参考光束。通过光电探测器的混频,输出差频信号(受光电探测器频响的限制,频差一般在 100兆赫以内)。被测物体的变化如位移、振动、转动、大气扰动等引起的光波相位变化或多普勒频移载于此差频上,经解调即可获得被测数据的仪器。 

瑞利干涉仪简介

  一种分波面双光束干涉仪。1896年,瑞利研究制成,是杨氏双缝干涉实验装置的改型,用于测定流体的折射率。单色缝光源S位于透镜L1的前焦面,出射的平行光射到与S平行的狭缝S1和S2上,从双缝出来的光分别通过长度为l的玻璃管T1和T2,接着分别通过补偿板C1和C2,在透镜L2的后焦面上相遇,产生干涉条

白光干涉仪简介

  干涉仪是一种对光在两个不同表面反射后形成的干涉条纹进行分析的仪器。其基本原理就是通过不同光学元件形成参考光路和检测光路。  干涉仪是利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介

光调制器的MZ干涉仪式调制器原理

电光调制器(EOM)是利用某些电光晶体,如铌酸锂(LiNbO3)、砷化镓(GaAs)和钽酸锂(LiTaO3)的电光效应而制成的。电光调制是基于线性电光效应(普尔克效应)即光波导的折射率正比于外加电场变化的效应。电光效应导致的相位调制器中光波导折射率的线性变化,使通过该波导的光波有了相位移动,从而实现

双光束干涉仪的长度测量和折射率测定

  长度测量  在双光束干涉仪中,若介质折射率均匀且保持恒定,则干涉条纹的移动是由两相干光几何路程之差发生变化所造成,根据条纹的移动数可进行长度的精确比较或绝对测量。迈克耳孙干涉仪和法布里-珀罗干涉仪曾被用来以镉红谱线的波长表示国际米。  折射率测定  两光束的几何路程保持不变,介质折射率变化也可导

激光干涉仪的功能特点

  1、激光干涉仪可以同时测量线性定位误差、直线度误差(双轴)、偏摆角、俯仰角和滚动角等,以及测量速度、加速度、振动等参数,并评估机床动态特性等。  2、激光干涉仪的光源——激光,具有高强度、高度方向性、空间同调

激光干涉仪的应用特点

(1)几何精度检测 可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等。(2)位置精度的检测及其自动补偿 可检测数控机床定位精度、重复定位精度、微量位移精度等。利用雷尼绍ML10激光干涉仪不仅能自动测量机器的误差,而且还能通过RS232接口自动对其线性误差进行补偿,比通常的补偿方法节省了大量时间

激光干涉仪的应用特点

(1)几何精度检测 可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等。(2)位置精度的检测及其自动补偿 可检测数控机床定位精度、重复定位精度、微量位移精度等。利用雷尼绍ML10激光干涉仪不仅能自动测量机器的误差,而且还能通过RS232接口自动对其线性误差进行补偿,比通常的补偿方法节省了大量时间

外差干涉仪的特点描述

 外差干涉仪的突出优点是:①由于物体变化所产生的多普勒频移信息是载于稳定的差频上,且其频率较高(几兆至100兆赫),因此,光电探测时避过了激光器的低频噪声和半导体器件的1/f噪声区;又利用频率跟踪等外差解调技术大量滤除了宽带噪声,因此提高了光电信号的信噪比。例如零差干涉测长仪中,当测量光束受外界干扰

激光干涉仪的技术特点

1. 同时测量线性定位误差、直线度误差(双轴)、偏摆角、俯仰角和滚动角2. 设计用于安装在机床主轴上的5D/6D传感器3. 可选的无线遥控传感器最长的控制距离可到25米4. 可测量速度、加速度、振动等参数,并评估机床动态特性5. 全套系统重量仅15公斤,设计紧凑、体积小,测量机床时不需三角架6. 集

傅列德尔克拉夫茨反应的主要特点

①酰基化反应不发生酰基异构现象;②酰基化反应不能生成多元酰基取代产物;③酰基化产物含有羰基能与路易斯酸络合消耗催化剂催化剂用量一般至少是酰化试剂的二倍。 苯环上有强吸电子基时不发生酰基化反应。

超导量子干涉仪简介

  SQUID实质是一种将磁通转化为电压的磁通传感器,其基本原理是基于超导约瑟夫森效应和磁通量子化现象.以SQUID为基础派生出各种传感器和测量仪器,可以用于测量磁场,电压,磁化率等物理量.被一薄势垒层分开的两块超导体构成一个约瑟夫森隧道结.当含有约瑟夫森隧道结的超导体闭合环路被适当大小的电流偏置后

双光束干涉仪简介

  双光束干涉仪是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用