基因检测历史漫谈
基因检测历史漫谈 ......阅读全文
基因检测历史漫谈
基因检测历史漫谈
漫谈酶标仪
名:酶标仪字:一台变相光电比色计或分光光度计号:数据收割机一.简介原理 酶标仪实际上就是一台变相光电比色计或分光光度计,其基本工作原理与主要结构和光电比色计基本相同。光源灯发出的光波经过滤光片或单色器变成一束单色光,进入塑料微孔极中的待测标本.该单色光一部分被标本吸收,另一部分则透过标
基因的历史
基因是控制生物性状的基本遗传单位。19世纪60年代,奥地利遗传学家格雷戈尔·孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。1909年丹麦遗
哈小克漫谈水质分析技术——夏日泳池检测
随着夏日似火骄阳,泳池成为了我们避暑消夏、锻炼身心的理想之地。然而,在享受泳池带来的乐趣之时,我们也不得不正视一个隐忧——泳池水中的尿素含量。尿素,主要来源于泳客的汗液、尿液等分泌物,其超标不仅会影响水质,还会与消毒剂中的氯反应生成氯胺,这种物质不仅带有刺激性气味,还可能对皮肤、眼睛及呼吸系统造成不
细胞计数方法漫谈
“12345,上山打老虎”这是毛博小时候经常唱的一首童谣,也教会了我怎么数数字。这项技能很重要,多年以后毛博远渡重洋,在米国实验室打工的时候还要经常用到这项技能,那就是细胞计数吧。其实,细胞计数最关键的不是计数,而是计数活细胞。因为在那一大堆细胞里面,肯定有死有活的,只有活的才对我们的实验有意义,是
漫谈离子源
样品的离子化是进行质谱分析的重要步骤,如何高效地进行离子化对质谱仪的灵敏度、分辨率等有着重要的影响。 离子源是对样品进行电离的场所,离子源的主要功能是把中性的原子(或分子)电离成离子,并形成具有一定能量的离子束。不同的质谱仪根据分析用途的不同配备有不同的离子源,这些离子源由于电离方式不同,具有不同的
基因枪的历史
基因枪的历史可以追溯到1987年。第一代基因枪是台式基因枪,其中火药型台式基因枪是基因枪中最原始的类型。最早的基因枪是由美国康奈尔大学Sanford于1987年与该校工程技术专家Wolf及Kallen合作研究出的一种基因转移的新方法。该方法一经发明便在学界崭露头角,Klein等人于1987年最早应用
基因芯片发展历史
俄罗斯科学院恩格尔哈得分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。当时用的是多聚寡核酸探针。几乎与此同时英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际ZL。在这些技术储备的基础上,1994
基因的历史和起源
基因是控制生物性状的基本遗传单位。19世纪60年代,奥地利遗传学家格雷戈尔·孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。1909年丹麦遗
关于基因历史的介绍
19世纪60年代,奥地利遗传学家格雷戈尔·孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。1909年丹麦遗传学家约翰逊(W. Johan
历史将选择转基因
摘要:1、转基因技术可通过人为操作改变受体生物的安全性。对农作物进行转基因改造,不仅可以保持它已有的安全性,而且可以增强抵御自然灾害的能力,提高生产潜力。2、国际上,经过安全性管理并经政府批准推广应用的农业转基因生物及其产品是安全的。3、转基因技术争论,实质是不同国家之间科技竞争力之争,是现代农
基因测序仪发展历史
1. 第一代DNA测序技术 1977年,Sanger等提出了经典的双脱氧核苷酸末端终止测序法。此后,在Sanger法的基础上,20世纪80年代中期出现了以荧光标记代替放射性同位素标记、以荧光信号接收器和计算机信号分析系统代替放射性自显影的自动测序仪。另外,90年代中期出现的毛细管电泳技术使得测序的通
美国水环境治理漫谈
当下,中美关系与中美发展对比似乎已成为较为敏感的议题。但在政治的纷扰之外,两个大国之间的互相注视、互相影响与互相交流从未停止。在全球结成命运共同体的环境领域,这种在经验和方法层面的学习借鉴更是必行之事。在中国水污染治理已进入“深水区”的当下,重新审视和观察发达国家治水、治污、改善和管理水环境的历
美国水环境治理漫谈
当下,中美关系与中美发展对比似乎已成为较为敏感的议题。但在政治的纷扰之外,两个大国之间的互相注视、互相影响与互相交流从未停止。在全球结成命运共同体的环境领域,这种在经验和方法层面的学习借鉴更是必行之事。在中国水污染治理已进入“深水区”的当下,重新审视和观察发达国家治水、治污、改善和管理水环境的历
漫谈超纯水机
我们每天都在做实验,接触到的最多的试剂莫过于水,它通常贯穿我们的整个实验过程。也许正是因为水的普遍和易得,往往让我们忽略了它对实验结果产生的影响。正确选择纯水仪器可以帮助科研工作者避免许多不必要的麻烦。在挑选一款合适的纯水器之前,我们应该首先了解我们的实验需要什么样的水。 一、水的基本知识
基因敲除技术的研究历史
基因敲除技术是20世纪80年代发展起来的,是建立在基因同源重组技术基础以及胚胎干细胞技术基础上的一种新分子生物学技术。所谓胚胎干细胞(EmbryonicStem cell,ES)是从着床前胚胎(孕3—5天)分离出的内细胞团(Inner cellmass,ICM)细胞,它具有向各种组织细胞分化的多分化
基因突变的研究历史
基因突变首先由T.H.摩尔根于1910年在果蝇中发现。H.J.马勒于1927年、L.J.斯塔德勒于1928年分别用X射线等在果蝇、玉米中最先诱发了突变。1947年C.奥尔巴克首次使用了化学诱变剂,用氮芥诱发了果蝇的突变。1943年S.E.卢里亚和M.德尔布吕克最早在大肠杆菌中证明对噬菌体抗性的出现是
简述割裂基因的发现历史
又称不连续基因或断裂基因.在真核生物的染色体上,由于内含子的存在,使真核生物基因成为不连续基因或断裂基因。 在本世纪70年代以前,人们一直认为遗传物质是双链DNA,在上面排列的基因是连续的。Robert and Sharp彻底改变了这一观念。他们以腺病毒作为实验对象,因为它的排列序列同其他高等
基因枪技术的历史
基因枪的历史可以追溯到1987年。第一代基因枪是台式基因枪,其中火药型台式基因枪是基因枪中最原始的类型。最早的基因枪是由美国康奈尔大学Sanford于1987年与该校工程技术专家Wolf及Kallen合作研究出的一种基因转移的新方法。该方法一经发明便在学界崭露头角,Klein等人于1987年最早应用
基因测序编辑本段发展历史
70年代末,WalterGilbert发明化学法、FrederickSanger发明双脱氧终止法手动测序,同位素标记80年代中期,出现自动测序仪(应用双脱氧终止法原理)、荧光代替同位素,计算机图象识别90年代中期,测序仪重大改进、集束化的毛细管电泳代替凝胶电泳2001年完成人类基因组框架图
基因敲除技术的研究历史
基因敲除技术是20世纪80年代发展起来的,是建立在基因同源重组技术基础以及胚胎干细胞技术基础上的一种新分子生物学技术。所谓胚胎干细胞(EmbryonicStem cell,ES)是从着床前胚胎(孕3—5天)分离出的内细胞团(Inner cellmass,ICM)细胞,它具有向各种组织细胞分化的多分化
基因敲除技术的研究历史
基因敲除技术是20世纪80年代发展起来的,是建立在基因同源重组技术基础以及胚胎干细胞技术基础上的一种新分子生物学技术。所谓胚胎干细胞(EmbryonicStem cell,ES)是从着床前胚胎(孕3—5天)分离出的内细胞团(Inner cellmass,ICM)细胞,它具有向各种组织细胞分化的多分化
基因技术的历史沿革
1953年沃森和克里克发现了DNA分子的双螺旋结构,开启了分子生物学的大门,奠定了基因技术的基础。[1] 人们对基因的认识是不断发展的,19世纪60年代,遗传学家孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理的产物。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到
基因测序仪的发展历史
1. 第一代DNA测序技术 1977年,Sanger等提出了经典的双脱氧核苷酸末端终止测序法。此后,在Sanger法的基础上,20世纪80年代中期出现了以荧光标记代替放射性同位素标记、以荧光信号接收器和计算机信号分析系统代替放射性自显影的自动测序仪。另外,90年代中期出现的毛细管电泳技术使得测
基因的发现与研究历史
基因是控制生物性状的基本遗传单位。19世纪60年代,奥地利遗传学家格雷戈尔·孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。1909年丹麦遗
基因测序技术的发展历史
基因测序技术 基因测序技术也称作DNA测序技术,即获得目的DNA片段碱基排列顺序的技术,获得目的DNA片段的序列是进一步进行分子生物学研究和基因改造的基础。基因测序技术的发展历史 1977年,Walter Gilbert和Frederick Sanger发明了第一台测序仪,并应用其测定了第一个基
基因芯片的发展历史
俄罗斯科学院恩格尔哈得分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。当时用的是多聚寡核酸探针。几乎与此同时英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际ZL。在这些技术储备的基础上,1994
漫谈半导体工艺节点(一)
近来,GlobalFoundries宣布将会推进7nm FinFET工艺,引发了行业对工艺节点、光刻等技术的探讨。本文是来自SemiEngineering 2014年的一篇报道,带领大家了解7nm工艺及以后的半导体业界的发展方向。(由于推测是2014年的,事实上可能有点过时,希望
漫谈分子诊断常用技术沿革
一、基于分子杂交的分子诊断技术 上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了最初
漫谈磁珠法核酸提取
人类对核酸物质的了解始于1869年,这一年Friederich Miescher从白细胞的细胞核中分离出一种他称之为“核素”的化学物质,这是人类历史上第一次有目的地提取细胞内的核物质,然而当时采用的方法十分简单,仅仅是通过改变溶液的酸碱度,核酸便从酸性溶液中沉淀出来。这也是最早对核酸性质的描述,