肿瘤标志物检测新方法基于单颗粒模式无机质谱技术

癌胚抗原(CEA)是一种糖蛋白,是多种癌症中最重要的肿瘤标志物之一。目前,CEA已被证实与结直肠癌有关,并被认为是乳腺癌、卵巢癌和口腔癌的重要生物标志物。糖类抗原15-3(CA15-3)是一种与乳腺癌高度相关的生物标志物,常用于乳腺癌患者的早期诊断、进展和复发诊断。但检测单个CEA或CA15-3的准确度不高,而同时检测CEA和CA15-3可更大程度地提高相关癌症早期诊断准确性。 广西师范大学邓必阳教授课题组建立了一种同时测定CEA和CA15-3的单颗粒ICP-MS磁免疫分析方法,通过自主合成氨基修饰的磁性纳米颗粒并将其与CEA一抗和CA15-3一抗偶联用作提取靶标生物标志物。用羧基功能化上转换纳米颗粒(UCNPs)和氨基功能化二氧化铈-二氧化硅纳米颗粒(CeO2-SiO2 NPs)标记抗体,由于174Yb和140Ce的瞬态信号频率与UCNPs和CeO2-SiO2 NPs浓度直接相关,可利用单颗粒ICP-MS产生的瞬态信号频......阅读全文

癌细胞无所遁形!质谱技术直接检测肿瘤新生抗原

  近日,伦敦癌症研究所和瑞士洛桑路德维希癌症研究所的研究人员通过质谱技术,直接测量了晚期结直肠癌患者衍生的类器官(Patient derived organoids,PDOs)的新生抗原数量,发现晚期结直肠癌细胞表面的新生抗原比计算机预测的要少得多,这也解释了当前免疫疗法对大多数晚期结直肠癌疗效不

成立“临床质谱检验中心”——质谱检测技术或成医院标配

  工作所倚重的新型检测技术,更是医院检验能力的象征。  首都医科大学附属北京妇产医院北京妇幼保健院始终秉承以患者为中心的精神,不断提升医疗质量,助力妇产检验领域的发展,于近日正式批准成立"临床质谱检验中心"。  北京妇产医院临床质谱检验中心的前身是检验科质谱中心,经过五年的高速发展,新中心作为一级

质谱检测器的技术特点

1)与紫外,激光诱导荧光和电化学检测器相比,更是一种通用型检测器;2)由于质谱的选择性和专一性,弥补了样品迁移时间变化的不足;3)质谱检测的灵敏度优于紫外分光光度法;4)质谱在检出峰的同时还能给出分子量和结构信息;5)某些质谱技术可以给出多电荷离子,对分析大分子如糖,蛋白质等与CE联用更有利。

质谱检测器的技术特点

1)与紫外,激光诱导荧光和电化学检测器相比,更是一种通用型检测器;2)由于质谱的选择性和专一性,弥补了样品迁移时间变化的不足;3)质谱检测的灵敏度优于紫外分光光度法;4)质谱在检出峰的同时还能给出分子量和结构信息;5)某些质谱技术可以给出多电荷离子,对分析大分子如糖,蛋白质等与CE联用更有利。

质谱检测器的技术特点

质谱检测器有如下特点:1)与紫外,激光诱导荧光和电化学检测器相比,更是一种通用型检测器;2)由于质谱的选择性和专一性,弥补了样品迁移时间变化的不足;3)质谱检测的灵敏度优于紫外分光光度法;4)质谱在检出峰的同时还能给出分子量和结构信息;5)某些质谱技术可以给出多电荷离子,对分析大分子如糖,蛋白质等与

质谱检测技术在中国临床应用

   由广州医科大学金域检验学院与金域医学联合主办的“2017质谱技术临床应用实训班”于11月19日结业。据悉,这是全国首个由第三方医学检验机构主办的质谱技术培训班,致力于推动质谱技术在中国临床应用的发展。有专家表示,与国外相比,质谱技术在中国临床实验室中的应用起步较晚,发展较为缓慢,目前还处于起步

肿瘤标志物检测新方法基于单颗粒模式无机质谱技术

  癌胚抗原(CEA)是一种糖蛋白,是多种癌症中最重要的肿瘤标志物之一。目前,CEA已被证实与结直肠癌有关,并被认为是乳腺癌、卵巢癌和口腔癌的重要生物标志物。糖类抗原15-3(CA15-3)是一种与乳腺癌高度相关的生物标志物,常用于乳腺癌患者的早期诊断、进展和复发诊断。但检测单个CEA或CA15-3

质谱/光谱/能谱等分析检测技术入选产业关键共性技术

  四、消费品工业   (一)纺织   1. 仿棉聚酯纤维及其纺织品产业化技术   主要技术内容:   通过仿棉PET、PTT分子结构与体系组成的设计优化、高比例改性组分在线添加与高效分散、亲水聚酯体系稳定纺丝、纤维形态与力学性能调控等关键技术攻关开发,解决超仿棉聚酯纤维吸湿透汽、抗起毛

促进质谱新技术,传承质谱文化

——第六届中国仪器仪表学会分析仪器分会质谱专业委员会诞生2022年8月26日,由中国仪器仪表学会分析仪器分会质谱仪器专家组和分析测试百科网主办的《第五届质谱仪器研发论坛》在北京市怀柔区举办。本次大会旨在进一步加强我国质谱新技术研发、应用、产业化及投资等方面的交流、促进我国质谱行业健康快速发展。质谱研

飞行质谱技术

工作原理早期的飞行质谱为基质辅助激光解吸离子飞行质谱(maldi-tofms),基质使被分析蛋白质离子化,再由质谱测定。seldi把基质改为以色谱原理设计的蛋白芯片,增强了分离能力。芯片技术最初应用于DNA分析,称基因芯片。由于芯片整合了多种高技术:高度集成、超微化、计算机化、自动化,具有多样、快速

质谱联用技术

质谱仪是一种很好的定性鉴定用仪器,对混合物的分析无能为力。色谱仪是一种很好的分离用仪器,但定性能力很差,二者结合起来,则能发挥各自专长,使分离和鉴定同时进行。因此,早在20世纪60年代就开始了气相色谱-质谱联用技术的研究,并出现了早期的气相色谱-质谱联用仪。在70年代末,这种联用仪器已经达到很高的水

飞行质谱技术

飞行质谱的全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-TOF或SELDI)。质谱技术-飞行质谱是由2002年诺贝尔化学奖得主田中(Tanaka)发明,赛弗吉(Ciphergen)系统生物公司制造的特殊芯片,诞生伊始便引起学术界的重视,成为最引人注目的亮点。 工作原理 早期的飞行质谱为基

质谱检测原理

质谱法的原理如下:待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质

质谱检测原理

质谱法的原理如下:待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质

质谱技术在临床生化检测中的应用

  早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大量有用的

质谱技术在临床生化检测中的应用

早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大

毒品检测的双翼:质谱色谱联用技术

2018年9月9日,深圳警方通报破获一起跨境运输毒品案。在这次案件中,警方共刑事拘留3名相关人员,缴获毒品K粉9.4余公斤。随着各类吸毒、贩毒案件的频频爆发,毒品已经成为当今世界最严重的社会问题之一。在加强毒品打击力度的同时,毒品犯罪的手段也在不断加强。为了更好的打击毒品走私和开展禁毒工作,

肿瘤早期预警的血清多肽质谱

肿瘤早期预警的血清多肽质谱1. 被检查者的基本资料的收集:1.1 被检查者的基本信息,包括年龄、性别、身高、体重、职业、民族、饮食习惯等。1.2 被检查者的家族的遗传史,以往的患病与治疗史,过敏等情况。1.3 被检查者的临床表现,包括各种体症的表现,如发烧,疼痛等。1.4 被检查者的临床影像学的表现

质谱技术及其应用

21世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,即蛋白质组学时代。正如基因草图的提前绘制得益于大规模全自动毛细管测序技术一样,后基因组研究也将会借助于现代生物质谱技术等得到迅猛发展。本文拟简述生物质谱技术及其在生命科学领域研究中的应用。1

质谱及其联用技术

(一)质谱(MS)法常用的离子化方式:基本原理是将供试物分子经一定离子化方式,如电子轰击或其它离子化方式,一般是把分子中的电子打掉一个成为M+,继之裂解成一系列碎片离子,再通过磁场使不同质荷比(m/z)的正离子分离并记录其相对强度,绘出MS图。即可进行元素分析、分子量测定、分子式确定和分子结构的解析

细胞质谱技术

细胞质谱技术(CytoMS)是指直接对细胞进行分析的质谱技术,可追朔到15年以前,当时采用的是激光捕获微切割(LCM)从目标细胞上采集生物分子,然后在线或离线结合质谱进行分析,主要是蛋白质组学中采用此策略。单细胞免疫质谱技术(Single Cell ImmunoMS)是当前质谱新应用之一,采用多种不

色谱质谱联用技术

  色谱质谱联用技术  一、联用技术的必要性  每种分析方法都有其特长和局限性。在线联用不仅能取长补短,而且还具有协同作用,获得两种技术单独使用时所不具备的某些功能。  色谱用于分离,而光谱用于结构鉴定,两者联用,不仅可以对混合物中的各未知组分进行定性,也可用于定量分析。  二、气相色谱-质谱联用(

质谱技术优缺点

优点高特异性、高灵敏度、单次分析的快速性、检测信息的丰富性,以及对复杂生物基质分析的高耐受性不足:1、所需的标准物质、试剂、耗材和仪器的维修服务等成本高;质谱实验室的仪器设备昂贵,技术人才匮乏,临床应用的门槛高。 2.自动化程度较低,对人依赖性较大;同时在数据处理和报告发放环节,仍未实现自动化;3.

质谱检测是什么

质谱检测是一种与光谱并列的谱学方法。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离

质谱检测是什么

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性

质谱检测是什么

质谱检测是一种与光谱并列的谱学方法。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离

质谱检测是什么

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性

质谱检测是什么

质谱检测是一种与光谱并列的谱学方法。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离

质谱检测是什么

质谱检测是一种与光谱并列的谱学方法。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离

质谱检测是什么

质谱检测是一种与光谱并列的谱学方法。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离