Antpedia LOGO WIKI资讯

高分辨电镜

高分辨电镜是用来观察很薄试样的相位衬度像的其有厚尺度分辨本领的透射电镜。 高分辨电镜通常指用来观察很薄试样的相位衬度像(点阵像和结构像)的其有厚尺度分辨本领的透射电镜.若将电子的加速电压提高到1 Llf if 1k G",则观察试样nJ厚达数}xm,这种电镜称为超高压I}}l分辨电镜......阅读全文

SEM与TEM带的EDAX的分辨率是多少

1.做TEM测试时样品的厚度最厚是多少 ?TEM的样品厚度最好小于100nm,太厚了电子束不易透过,分析效果不好。2.请问样品的的穿晶断裂和沿晶断裂在SEM图片上有各有什么明显的特征?在SEM图片中,沿晶断裂可以清楚地看到裂纹是沿着晶界展开,且晶粒晶界明显;穿晶断裂则是裂纹在晶粒中展开,晶粒晶界都较

物理所电子显微学图像像衬理论研究获进展

  透射电镜高分辨成像是材料等研究领域的重要分析手段,然而高分辨像像衬度(简称像衬)与晶体结构之间的关系并不是显而易见的:像衬除了会受成像条件(如欠焦量)的影响,还随着样品厚度的变化而变化,像差校正电镜中尤其严重。所以为了解释高分辨像衬需要理解成像条件和样品厚度对像衬的影响。  从物理过程上讲,透射

从样品制备到实际操作,手把手教你拍出高质量TEM照片

透射电子显微镜(Transmission Electron Microscope,TEM)具有很高的分辨率和放大倍数高,广泛应用于材料科学、地球科学、医学和生命科学等领域。透射电子显微镜结合不同的附件(X射线能谱分析(EDS)、电子能量损失谱(EELS)),可以同时提供形貌、成分、结构信息,它可以揭

探索物质结构之透射电子显微镜

眼睛是人类认识客观世界的第一架“光学仪器”,但它的能力却是有限的,通常认为人眼睛的分辨率为0.1 mm。17世纪初,光学显微镜(图1)出现,可以把细小的物体放大到千倍以上,分辨率比人眼睛提高了500 倍以上,这也是人类认识物质世界的一次巨大突破。随着科学技术的不断发展,直接观察到原子是人们一直以来的

TESCAN连续推出三款电子显微镜新品!第四代电镜惊艳现世

  2018年11月,TESCAN先后发布了三款扫描电子显微镜新品:S9000G超高分辨型镓离子源双束FIB系统,S9000超高分辨型场发射扫描电镜,S8000X高分辨型氙等离子源双束FIB系统!作为全球电子显微镜及聚焦离子束等设备的主要供应商,TESCAN一直致力于新产品、新技术的创新和研发,以满

新疆理化所在纳米液滴生长微观动力学过程研究获进展

  纳米材料的成核、生长是材料和化学科学研究的一个基本过程,该过程能够为设计具有新颖和重要性能的材料提供理论指导。因此,该研究一直是材料和化学研究关注的重要基础科学问题。在原子尺度观察纳米材料的成核、生长微观动力学过程则是认识纳米材料生长机制的关键,但在实验上很难实现在纳米材料生长的同时对其生长微观

英伦访学见闻之国外化学实验室

   最近有人提到央视的广告词中有“我们恨化学”。奇怪这个世界上有什么不是双刃剑呢?为何单单恨了化学。化学物质原有它正确的用途,用了不该用的地方,得了不好的由头,就如同“刀”杀了人,是该埋怨“刀”,还是“刀”背后的“人”或者“管理体制”呢?如果因为化学物质有害就放弃它,显然我们将

追随诺贝尔足迹——2017年北京市电子显微学年会在京召开

  2017年度北京市电子显微学年会在北京天文馆召开。  分析测试百科网讯2017年12月19日,2017年度北京市电子显微学年会在北京天文馆召开,本次会议年会由北京市电镜学会、北京理化分析测试技术学会主办,旨在推动北京及周边地区广大电子显微学的学术及技术水平,促进电子显微学工作者在材料科学,生命科

透射电子显微镜的起源与发展

透射电子显微镜的起源与发展 透射电子显微镜起源于20 世纪20~30 年代。1924 年,德布罗意提出了粒子具有波动性。1926—1927 年,Davisson、Germer 以及Thompson Reid 实验发现了电子衍射,从

从原理到实践 如何拍出高质量TEM照片

作为材料研究人员,最关心的问题之一就是材料性能与微观结构之间的关系。透射电子显微镜自上个世纪三十年代发明以来,就一直为材料的结构和成分表证提供强有力的支持。废话不多说,咱们直奔主题吧,相信点进来看这篇文章的各位都是有一定电镜基础的童鞋,但是为了更好的理解透射电镜的操作和拍摄技巧,咱们

只需3分钟,2018年电镜重点大事了然于胸

  分析测试百科网讯 电子显微镜,简称电镜,其发展史可追溯至1932年由德国科学家 Max Knoll发明的世界上第一台透射电子显微镜(TEM)。然而,兵马未动,粮草先行,只有形成完整的电子、光学理论基础,电镜才能形成实体。因此电镜的理论基础可回溯至1834年法拉第首次在皇家学会会报上发表的关于阐述

新疆理化所在原子尺度揭示固液相变机制

  中国科学院新疆理化技术研究所环境科学与技术研究室的科研人员在固液可逆相变原子机制研究中取得进展。相关成果以In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles 为题发表在

室温下PdSi纳米颗粒的类液体行为

  作为目前已经被大量市场化的应用材料,低维材料表现出各种优异性能,在半导体、光学、医药、能源、信息技术等领域及人们日常生活用品中都扮演着重要的角色。同时凝聚态物理诸多前沿问题也都与低维材料及其制备工艺息息相关。然而,目前对于低维非晶材料的研究及相关报道还很少。2007年,Ediger利用薄膜沉积技

光谱界专家分享光谱技术的新进展、新应用(三)

——第十九届全国分子光谱学学术会议暨2016年光谱年会大会报告(三)  分析测试百科网讯 2016年10月28日,第十九届全国分子光谱学学术会议暨2016年光谱年会在福州盛大开幕(详见本网报道:光谱领域专家汇聚福州 共同探讨光谱学发展),会议由中国光学学会和中国化学会主办,中国科学院福建物质结构研究

从原理到实践 如何拍出高质量TEM照片

作为材料研究人员,最关心的问题之一就是材料性能与微观结构之间的关系。透射电子显微镜自上个世纪三十年代发明以来,就一直为材料的结构和成分表证提供强有力的支持。废话不多说,咱们直奔主题吧,相信点进来看这篇文章的各位都是有一定电镜基础的童鞋,但是为了更好的理解透射电镜的操作和拍摄技巧,咱们还是不妨先回顾一

高分辨TEM答疑

1.TEM-EDS与XPS测试时采样深度的差别?    XPS采样深度为2-5nm,我想知道EDS采样深度大约1um。 1.jpg   2.Z衬度像是利用STEM的高角度暗场探测器成像,即HAADF。能否利用普通ADF得到Z衬度像?   原子分辨率STEM并不

研究团队在全新卤素MXene材料创制研究中取得进展

  MXene是近年来发现的一类新型二维层状碳/氮化物,其独特的二维层状结构、可调谐的表面化学性质和导电性使其在储能、催化、电磁吸收/屏蔽、复合材料、传感器等领域展现出良好的应用前景。MXenes通常通过选择性刻蚀Mn+1AXn相前驱体的A原子层制得,其化学通式为Mn+1XnTx。理论研究表明,MX

高分辨TEM答疑

  1.TEM-EDS与XPS测试时采样深度的差别?   XPS采样深度为2-5nm,我想知道EDS采样深度大约1um。  2.Z衬度像是利用STEM的高角度暗场探测器成像,即HAADF。能否利用普通ADF得到Z衬度像?  原子分辨率STEM并不是HAADF的专利,ADF或明场探头也可以做到,只是可

冷冻电镜三维重构解析揭示丝状病毒IKe结构

  清华大学医学院向烨研究组与以色列特拉维夫大学Amir Goldbourt组合作于2019年2月28日在《美国科学院院报》(Proceedings of the National Academy of Sciences of the United States of America, PNAS)杂

电镜测试中常用的元素分析方法

元素分析在电镜分析中经常使用,随着科学技术的发展,现代分析型电镜通过安装 X射线能谱、能量过滤器、高角度环形探测器等配件, 逐步实现了在多学科领域、 纳米尺度下对样品进行多种信号的测试,从而可以获得更全面的结构以及成分信息。以下是几种现在常用的电镜中分析元素的方法。1X 射线能谱X 射线能谱

电镜测试中常用的元素分析方法

元素分析在电镜分析中经常使用,随着科学技术的发展,现代分析型电镜通过安装 X射线能谱、能量过滤器、高角度环形探测器等配件, 逐步实现了在多学科领域、 纳米尺度下对样品进行多种信号的测试,从而可以获得更全面的结构以及成分信息。以下是几种现在常用的电镜中分析元素的方法。 1X

向50年创新致敬, 一览质谱领军者的风采

  -访赛默飞中国区色谱和质谱业务高级商务运营总监李剑峰赛默飞中国区色谱和质谱业务高级商务运营总监李剑峰(左)和分析测试百科网总经理卞利萍女士(右)  今年是赛默飞质谱业务成立50周年,在第三届全国质谱分析学术报告会上赛默飞展出了向创新历史致敬的一系列内容,参会者随处可感受到红色庆典的浓郁和热烈。分

2016年中科院仪器设备1亿预算第一批中标结果

  中国政府采购网消息,中国科学院2016年仪器设备部门集中采购项目(第一批)结果公布,本次中标仪器共计23台仪器,3台流标,有2台未公布结果。采购的仪器为质谱和电镜。此前,本项目公开招标信息显示,预算总金额为10782.67万元,此次中标总金额为8534.7894 万元。包号货物名称数量(套)简要

周强组解析首个人源氨基酸转运体LAT1–4F2hc复合体结构

  L 型氨基酸转运体1,简称LAT1(也被称作SLC7A5),属于反向转运蛋白,能向胞内转运不带电氨基酸,此外还参与药物的吸收、甲状腺激素及激素前体物质如L-DOPA的跨膜运送。LAT1和 LAT2(SLC7A8)同属于SLC7 家族,其介导氨基酸反向协同转运过程不依赖于钠离子,其中LAT1也不依

橙红光波段最高荧光量子效率的碳纳米点研制成功

  近日,中国科学院长春光学精密机械与物理研究所研究员曲松楠(青促会会员)课题组研制出橙红光波段荧光量子效率高达46%的碳纳米点,为国际上最高值。该成果发表在国际期刊《先进材料》上(Adv.   Mater.,2016,DOI:10.1002/adma.201504891)。   发光碳纳米点是近十

电镜“老玩家”袁建忠:专注电镜20年,共筑科技强国梦

  分析测试百科网讯 显微系统作为人们观察微观物质结构的伟大发明,已经被用于各行各业中,成为现代分析的重要工具之一。在显微界中,有这样一家公司,从诞生之日起不断追求更高的显微技术,同时也一直引领着全球显微技术的发展潮流,她就是知名电子光学系统制造商——日本电子(中国地区称为“捷欧路”)。

光学显微镜的发展历程以及在防潮箱里储存

   一、显微镜的zui早历史     2000多年前,中国的《墨经》中记载,用凹面镜可以获得一个缩小倒立像和一个放大正立像。这是人类关于物体成像放大和缩小的zui早认识。1590年J.杨斯岑与z.杨斯岑兄弟俩发明了世界上zui早

光学显微镜的发展历程以及在防潮箱里储存

电子防潮箱里的储存方法。    一、显微镜的zui早历史     2000多年前,中国的《墨经》中记载,用凹面镜可以获得一个缩小倒立像和一个放大正立像。这是人类关于物体成像放大和缩小的zui早认识。1590年J.杨斯岑与

中国科大揭示人类疱疹病毒的基因组包装机制

  5月30日,《自然》杂志在线发表了中国科学技术大学合肥微尺度物质科学国家研究中心、生命科学学院博士刘云涛、教授毕国强与合作者的研究论文,该工作利用冷冻电镜首次解析了人类疱疹病毒基因组包装的关键机制以及病毒的DNA基因组结构,有助于预防和控制疱疹病毒引发的多种疾病,并可望改造疱疹病毒用于靶向治疗。

推动电镜技术新发展 看2020北京电镜年会

  分析测试百科网讯 2020年12月19日,由北京理化分析测试技术学会电镜专业委员会主办的2020年度北京市电子显微学年会隆重举行。本次会议旨在推动北京及周边省市广大电子显微学的学术及技术水平,促进电子显微学工作者在材料科学、生命科学等领域的应用、发展和交流。本次会议共有近200人出席、参与。分析