镁合金力学强度与耐蚀性协同提升研究取得重要突破
镁合金的密度是钢铁的1/4、铝合金的2/3,是最轻的金属结构材料,但低的绝对强度和耐蚀性极大限制了其实际工程应用。通常采用的剧烈塑性变形(SPD)方法对镁合金强度的大幅提升较为有效,可制备出超细晶超高强镁合金。然而,具有密排六方结构镁合金较差的冷变形能力,需在较高温度条件下进行SPD加工处理,极易造成晶粒长大,难以获得超细晶组织。更为严重的是,传统SPD制备的超细晶所形成非平衡晶界会显著降低镁合金的耐蚀性。此外,传统SPD制备的超细晶镁合金样品尺寸小,难以在工程中获得应用。早期研究表明,孪晶组织也可用于细化晶粒,提高强度,且孪晶界的能量低,不会对镁合金耐腐蚀性能造成显著影响。然而,镁合金中最易启动的拉伸孪晶界面在应力作用下易长大和合并。因此,高密度超细孪晶组织的制备是亟需解决的关键问题。 近日,金属所中科院核用材料与安全评价重点实验室许道奎研究员团队与南京工业大学信运昌教授课题组合作在制备高强高耐蚀镁合金材料方面取得重要进......阅读全文
预孪晶镁合金变形机理研究获新进展
镁合金作为“21世纪绿色工程材料”而广泛应用于武器、航天航空以及交通运输等领域。如何提高镁合金在爆炸、沖击等各种苛刻服役环境下的抗冲击性能,以及分析预孪晶镁合金在高速冲击载荷下的变形机理具有重要研究价值。 记者7月7日从湖南科技大学获悉,该校博士生导师刘筱团队通过轧制变形得到孪晶类型主要为{10
镁合金力学强度与耐蚀性协同提升研究取得重要突破
镁合金的密度是钢铁的1/4、铝合金的2/3,是最轻的金属结构材料,但低的绝对强度和耐蚀性极大限制了其实际工程应用。通常采用的剧烈塑性变形(SPD)方法对镁合金强度的大幅提升较为有效,可制备出超细晶超高强镁合金。然而,具有密排六方结构镁合金较差的冷变形能力,需在较高温度条件下进行SPD加工处理,极
新工艺改善镁合金力学性能
结构材料轻量化是实现我国“双碳”目标的重要着力点。镁合金作为目前最轻的金属结构材料和“21世纪绿色工程材料”,在航天、军工、交通运输等领域具有广阔的应用前景。然而,传统方式成形与加工的镁合金强韧性偏低,极大地限制了其规模化应用。因此,开发成形新工艺、加工新方法制备高强韧镁合金对实现其规模化应用至关重
超硬纳米孪晶结构块材问世
近日,燕山大学亚稳材料制备技术与科学国家重点实验室教授田永君领导的研究小组与多家科研机构合作,利用高温高压技术成功合成出超高硬度的纳米孪晶结构立方氮化硼块材。相关研究成果发表于最新一期的《自然》杂志。 据介绍,立方氮化硼是一种重要的超硬材料,在铁基材料加工行业中获得了广泛应用。但令人遗憾的
西工大《IJP》:增材制造多尺度退火孪晶助力高强中熵合金优异塑性
增材制造技术凭借多种复杂热物理过程和非平衡凝固的特点,产生了独特的微观组织和优异的力学性能。其中,亚微米尺度胞状组织展现出优异的位错强化效果。在此基础上,通过后热处理引入共格纳米析出相可实现强度的有效提升。然而,上述通过控制线缺陷和体缺陷的传统强化策略,其强度增加通常以塑性的降低为代价。共格孪晶
如何辨别孪晶衍射花样和超点阵花样
电子衍射花样是倒易空间,形貌像是正空间,二者本身就是互相垂直的关系,所以形貌像中的线性花样肯定垂直于电子衍射花样,孪晶亦是如此。
中国科大孪晶金属纳米晶催化作用机制研究取得进展
近日,中国科学技术大学教授曾杰课题组与李震宇合作,在孪晶金属纳米晶催化作用机制研究方面取得新进展。研究人员成功制备了Au75Pd25二十面体和八面体,尽管两种合金暴露同一种晶面,但是具备孪晶结构的Au75Pd25二十面体在环己烷氧化反应中催化活性和选择性明显高于单晶结构的八面体。通过深入的理论计
梯度纳米孪晶强化与硬化研究获新突破
中国科学院金属研究所研究员卢磊课题组和美国布朗大学教授高华健研究组合作,发现增加结构梯度可实现梯度纳米孪晶结构材料强度——加工硬化的协同提高,甚至可超过梯度微观结构中最强的部分。梯度纳米孪晶强化的概念结合了多尺度结构梯度,进一步提高了材料的强度极限,并为发展新一代高强度/延性金属材料提供了新思
张广平团队揭示孪晶辅助纳米晶粒生长机制
近日,中科院金属研究所沈阳材料科学国家(联合)实验室研究员张广平带领团队,通过对纳米尺度金属薄膜疲劳加载下晶粒长大行为的原子尺度研究,揭示了“孪生辅助纳米晶粒长大”的全新物理机制,相关论文在线发表于《自然—通讯》上。 尽管金属中的晶界具有阻碍位错运动、强化材料的重要作用,但当材料的晶粒尺寸
纳米孪晶金属与历史无关的稳定循环响应研究取得突破
疲劳通常指反复施加循环载荷(远小于材料的屈服应力极限)而引起的一种材料弱化过程。实际服役过程中约90%金属构件的失效均由疲劳断裂引起,其原因是材料在循环加载过程中微观结构不断变化、遭受严重且不可逆转的累积损伤,从而导致材料循环硬化或软化直至最终失效。金属材料的非稳定循环响应及疲劳寿命强烈依赖于其
金属所高塑性、室温成形镁合金板材研究取得重要进展
近期,中科院金属研究所材料环境腐蚀研究中心韩恩厚、陈荣石研究员带领博士生闫宏、吴迪在镁合金相平衡热力学原理和相图计算基础上,通过添加适量的稀土元素,如Y、Nd、Gd等,优化轧制工艺、中间退火和轧制后的最终退火工艺,研究了一系列Mg-Zn-RE合金轧制板材的组织、织构和各向异性。相
晶相高聚物和非晶相高聚物的相关介绍
高聚物的性能不仅与高分子的相对分子质量和分子结构从结晶状态来看,线型结构的高聚物有晶相的和非晶相的。晶相高聚物由于其内部分子排列很有规律,分子间的作用力较大,故其耐热性和机械强度都比非晶相的高,熔限较窄。非晶相高聚物没有一定的熔点,耐热性能和机械强度都比晶相的低,由于高分子的分子链很长,要使分子
极硬材料合成再获突破-纳米孪晶金刚石硬度稳定超前
燕山大学教授田永君团队与吉林大学教授马琰铭和美国芝加哥大学教授王雁宾合作,继2013年合成出极硬纳米孪晶立方氮化硼之后再次取得突破,在高温高压下成功地合成出硬度两倍于天然金刚石的纳米孪晶结构金刚石块材。6月12日,研究成果在《自然》上发表。 天然金刚石一直被公认为自然界中最硬的材料。1955年
Nature-Commun.:-揭示纳米孪晶变形机制转变的临界尺度规律
多尺度纳米孪晶的独特性 多尺度纳米孪晶结构与传统粗晶和纳米晶金属的变形行为截然不同,表现出异乎寻常的独特性能,如更高的强度/延展性、更好的耐疲劳等特性。因此,不同尺度纳米孪晶的变形机制引起材料科学家的广泛关注。目前没有直接的证据说明,当孪晶片层厚度减小到几纳米时,现有的位错滑移增强增韧机理是否
304不锈钢盘管破坏分析
304不锈钢盘管破坏分析304 不锈钢盘管的微观组织照片见图6。从图中可以看出,304 不锈钢盘管材料微观组织基本由单相奥氏体晶粒以及极少量碳化物组成,晶粒度比较粗大(约3 级),碳化物分布均匀,没有发生晶间碳化物大量析出现象,可以排除晶间敏化的可能性。晶内有大量孪晶和滑移线出现,由于孪晶是奥氏体的
TEM分析中电子衍射花样的标定原理:-孪晶电子衍射花样
二次衍射在电子束穿行晶体的过程中,会产生较强的衍射束,它又可以作为入射束,在晶体中产生再次衍射,称为二次衍射。二次衍射形成的新的附加斑点称作二次衍射斑。二次衍射很强时,还可以再行衍射,产生多次衍射。产生二次衍射的条件:1、晶体足够厚;2、衍射束要有足够的强度。二次衍射花样形成的示意图
TEM分析中电子衍射花样的标定原理:-孪晶电子衍射花样
孪晶电子衍射花样所谓孪晶,通常指按一定取向关系并排生长在一起的同一物质的两个晶粒。从晶体学上讲,可以把孪晶晶体的一部分看成另一部分以某一低指数晶面为对称面的镜像;或以某一低指数晶向为旋转轴旋转一定的角度。孪晶的分类:1、按晶体学特点:反映孪晶和旋转孪晶;2、按形成方式:生长孪晶和形变孪晶;3、按孪晶
我国学者在准晶异质形核析出机理研究取得进展
准晶的发现冲击了凝聚态物质关于晶体平移周期性的概念。准晶一经发现,就因其特殊的结构和性能激发起材料和凝聚态物理等多个领域的研究热潮。郭可信先生在金属研究所领导的研究队伍在准晶研究上取得了一批有影响力的科学成果。以色列科学家Shechtman因发现准晶被授予2011年的诺贝尔化学奖。但准晶的形核与
液晶、晶相和液相的定义
液晶------处于液晶态的一种物质;晶相------长程周期性位置/平移有序相;液相------没有长程周期或取向有序的相;
我国在纳米孪晶Cu与低疲劳累积损伤研究领域取得新进展
在国家自然科学基金项目(项目编号:50725103,50890171,U1608257,51420105001,51471172)等资助下,中国科学院金属研究所沈阳材料科学国家(联合)实验室卢磊研究员课题组和美国布朗大学高华健教授课题组合作研究,发现具有晶体学对称结构的纳米孪晶金属的循环响应稳定
液相,晶相及液晶相的概念区分
晶相------长程周期性位置/平移有序相;液相------没有长程周期或取向有序的相;液晶相(中间相)------没有长程位置有序,但有长程取向有序的相;
中国团队研制出最强镁合金材料-登上nature封面
中国科学家研制的一种高强度镁合金材料接近了理论上镁基合金的强度极限。 在刚刚出版的《自然》杂志中,香港城市大学副校长吕坚、浙江大学朱林利副教授等中国科学家联合发表的论文《采用双相纳米结构制成高强度镁合金材料》(Dual-phase nanostructuring as a route to h
不规则晶体也能完美融合?科学家揭示五重孪晶融合生长机制
成核和生长是结晶的两个重要阶段,对晶体的晶相、尺寸、形貌、性能等起着关键的控制作用。中国科学院新疆理化技术研究所研究员李俊杰团队联合美国劳伦斯国家实验室、欧洲伊比利亚国际纳米实验室利用球差矫正的透射电子显微术及分子动力学模拟,揭示了缺陷密度及接触方式影响的晶体融合生长机制。近日,相关研究成果发表
电子背散射衍射的晶体分析
晶界、亚晶及孪晶性质的分析在得到EBSD整个扫描区域相邻两点之间的取向差信息后,可进行研究的界面有晶界、亚晶、相界、孪晶界、特殊界面(重合位置点阵CSL等)。相鉴定及相比计算就目前来说,相鉴定是指根据固体的晶体结构来对其物理上的区别进行分类。EBSD发展成为进行相鉴定的工具,其应用还不如取向关系测量
晶体融合生长机制研究获进展
成核和生长是结晶的两个重要阶段,对晶体晶相、尺寸、形貌、性能等起关键控制作用。然而,经典理论难以解释晶体生长过程中观察到的诸多现象,如二次成核中存在的非晶过渡态、组分分离现象等。近期,中国科学院新疆理化技术研究所研究员李俊杰团队联合美国劳伦斯国家实验室、欧洲伊比利亚国际纳米实验室等的科研人员,利用球
中外科学家合成新材料-比金刚石硬两倍
天然金刚石在2700多年前被发现以来,一直被公认为自然界中的最硬材料。但是,中国科学家成功合成出了硬度两倍于天然金刚石新材料。 中国材料科学家燕山大学田永君教授领导的研究团队与吉林大学马琰铭教授和美国芝加哥大学王雁宾教授合作,在高温高压下成功合成出硬度两倍于天然金刚石的纳米孪晶结构金刚石
共晶相就是液相这个说法对吗?
以前一直以为共晶相是固相,今天看文章发现里面把共晶相算在液相里面 共晶相?不是固相吗?液体里面同时析出两种固相,叫做共晶。材科里面是这么讲的 就是这篇文章个人认为,升温时共晶相应该算在液相里面;降温时共晶相应该算在固相里面。个人看法仅供参考:共晶的意思是:首先必须是晶体,然后才有可能是共晶!共晶就是
粗晶,准晶,液晶,非晶,纳米晶的结构,特点
晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。
晶粒尺寸及形状的分析EBSD
晶粒尺寸及形状的分析传统的晶粒尺寸测量依赖于显微组织图象中晶界的观察。自从EBSD出现以来,并非所有晶界都能被常规浸蚀方法显现这一事实已变得很清楚,特别是那些被称为“特殊”的晶界,如孪晶和小角晶界。因为其复杂性,严重孪晶显微组织的晶粒尺寸测量就变得十分困难。由于晶粒主要被定义为均匀结晶学取向的单元,
新研究提高钛合金抗氧脆能力
西安交通大学金属材料强度国家重点实验室孙军院士和张金钰教授团队提出了一种违反直觉的设计策略,利用间隙原子-位错交互作用显著扭曲热机械加工预先引入刃位错的平面应力场,使其转变为非平面应力场,这促使多个马氏体变体沿富O的刃位错线同时形核,从而构筑出间隙O强化的纳米孪晶α'马氏体新型微观结构,进而