怎么将红外光谱图换成波数与吸光度

波数的话,一般是10000除以波长(nm),然后得到 波数cm-1;吸光度的话,如果你有透过率值,那么吸光度可以用 log(1/T)计算得到......阅读全文

红外光谱法结构测定

1.溶解法:取挥发油或挥发性药物细粉,移至具塞玻璃瓶中加微温水使成全量,振摇15分钟,冷至室温,静置4h~8h小时,滤过至澄清,自滤器上加水使成全量,摇匀即得。2.增溶法:取适量聚山梨酯80等非离子型表面活性剂或乙醇等水溶性有机溶剂,与挥发油混溶后加水使成全量,摇匀即得。3.蒸馏法:取适量中药材于蒸

红外与拉曼光谱的特点

1.从本质上面来说,两者都是振动光谱,而且测量的都是基态的激发或者吸收,能量范围都是一样的。2.拉曼是一个差分光谱。形象的来说,可乐的价钱是1毛钱,你扔进去1毛钱,你就能得到可乐,这是红外。可是如果你扔进去1块钱,会出来一瓶可乐和9毛找的钱,你仍旧可以知道可乐的价钱,这就是拉曼。3.光谱的选择性法则

红外光谱吸收强度如何表达

红外光谱吸收强度表达具体介绍如下:1、根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数,n3:化合价为3价的原子个数,n1:化合价为1价的原子个数。2、分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000

近红外光谱测定固体样品

近红外光谱测定固体样品近红外光谱是一种通用型的技术,适用于各种化学和物理参数的测定的。该技术在各个行业被广泛使用,一些典型的应用如:聚合物:聚乙烯(PE)的密度;熔融指数;固有黏度化工:多元醇的羟基值石油化工:汽油的研究法的辛烷值(RON);柴油的十六烷值油和润滑油:总酸值(TAN)制药:冻干产品的

什么是傅立叶变换红外光谱?

FTIR指的是傅立叶变换红外,是红外光谱分析的首选方法。 当连续波长的红外光源照射样品时,样品中的分子会吸收或部分某些波长光,没有被吸收的光会到达检测器(称为透射方法)。 将检测器获取透过样品的光模拟信号进行模数转换和傅立叶变换,得到具有样品信息和背景信息的单光束谱,然后用相同的检测方法获取红外光不

红外光谱法的应用

红外光谱法广泛用于有机化合物的定性鉴定和结构分析。已知物的鉴定将试样的谱图与标准的谱图进行对照,或者与文献上的谱图进行对照。如果两张谱图各吸收峰的位置和形状完全相同,峰的相对强度一样,就可以认为样品是该种标准物。如果两张谱图不一样,或峰位不一致,则说明两者不为同一化合物,或样品有杂质。如用计算机谱图

红外光谱法的应用

红外光谱法的应用 一、 实验目的1、 学习红外分光光度计的使用方法;2、 熟悉样品的制备方法;3、 初步学会红外吸收光谱的解析。二、 实验原理物质分子中的各种不同基团,有选择地吸收不同频率的红外辐射后,发生振动能级之间跃迁,行成各自特征的红外吸收光谱,据此可对物质进行定性、定量分析,以及对化合物进行

红外光谱仪的应用

红外光谱仪应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。 红外光谱仪可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角

漫反射红外光谱的原理

因为红外压片要求颗粒尽量细小,这样压出来的片才能够光洁而且透明,对光线的透过性好,打红外的时候就不会有光的折射或者散射出现了。如果你经常打红外,磨KBr的时候你会发现,粗的KBr在光线下可以看到闪闪发光,说明粗的KBr对于光线有很强的折射作用,这些都是对红外不利的。而磨得很细的KBr则是白色不反光的

红外光谱解析基础知识

(一)、基团频率区和指纹区1、基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800) cm-1和1800 (1300 ) cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区

红外光谱主要测定的物质

红外光谱可以测定无机化合物(如羰基化合物、金属离子与有机配体形成的配位化合物、杂多酸及其盐)、有机化合物、高分子,通过测定红外吸收的位置、形状及强弱来推断化合物所含有的化学键

红外光谱(I-R)(Infrared--Spectroscopy)

  1、 红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。   2、红外光谱的特点:特征

色散型红外光谱仪

一、实验目的1、学习并掌握色散型红外光谱仪的使用方法和原理;2、了解红外光谱的应用,以及掌握红外光区分析时试样的制备方法;3、观察不同基团的特征吸收,并从红外光谱图中识别基团以及从这些基团确定未知化合物的主要结构。二、实验原理1、色散型红外光谱仪基本工作原理红外分光光度计,是一种用棱镜或光栅进行分光

什么是红外光谱的基线

  一、释义:  基线是在透过率里面表现出来的,可以根据吸光度的图谱需转换才可以解释。  二、红外光谱的概念:  红外光谱 (Infrared Spectroscopy, IR) 的研究始于 20 世纪初,自1940 年红外光谱仪问世,红外光谱在有机化学研究中广泛应用。新技术 (如发射光谱、光声光谱

红外光谱的原理及应用

一 红外吸收光谱的定义及产生分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射并由其振动

红外光谱仪如何保养?

  红外光谱仪是通过一定频率的红外光聚焦照射样品来分析其类型和结构的仪器,具体工作原理是照射过程中如果分子中某个基团的振动频率与照射红外线频率相同,产生的共振使分子吸收一定频率的红外线,把这种情况用仪器记录下来能得到全面反映样品成分特征的光谱,红外光谱仪这类精密仪器在使用中要多加保养。   一、注意

近红外光谱仪简介

简介近红外光谱技术(NIR)是 90 年代以来发展最快、最引人注目的分析技术之一。随着 NIR 分析方法的深入应用和发展,已逐渐得到大众的普遍接受和官方的认可。 1978年美国和加大就采用近红外法作为分析小麦蛋白质的标准方法, 1998 年美国材料试验学会制订了近红外光谱测定多元醇(聚亚

水对红外光谱的影响

水在红外光谱里面也会成峰的.水峰中,游离水的O-H在3580-3670是尖峰;3550-3230为氢键缔合的O-H峰,一般峰形宽,振动频率与浓度无关.由于和其他羟基峰接近,可能会出现一定的干扰.这个时候还是考虑下样品除水吧.

红外光谱仪制样方法

红外光谱仪制样方法一、红外光谱法对试样的要求红外光谱的试样可以是液体、固体或气体,一般应要求:  (1)试样应该是单一组份的纯物质,纯度应>98%或符合商业规格才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 

炔烃的红外光谱特征

  炔烃:有三个特征带:   ν≡C-H ,δ≡C-H , ν C≡C  1、 ν≡C-H   在四氯化碳溶液中位于3320-3310cm-1,强峰,固体或液体时在3300-3250cm-1。峰形较窄,易于OH和NH区别开。  2、 δ≡C-H   ≡C-H的面外弯曲振动通常在900-610cm-1

红外光谱中液体样品测试

液体样品是我们红外测试中最常见的样品,定性或定量分析样品中的成分。液体样品测试方法有:液体涂膜法,直接将液体样品涂在盐片上测试。该方法仅适合于定性分析;也可以将液体样品涂在其中一片盐片上,将另一个盐片压上去,测试。该方法适合于易挥发的液体样品;液体池法,将液体样品用注射器注入液体池测试。该方法适合于

红外光谱介绍及测试方法

  一、重庆大学电镜中心红外光谱仪器  1.仪器品牌、型号:Nicolet iS5 傅里叶变换红外光谱仪  2.主要技术指标:  ① 光谱范围:7800-350cm-1。  ② 干涉仪:VECTRA磁浮式干涉仪。  ③ 分束器:镀Ge的KBr分束器;检测器:DLaTGS。  ④ 光源:Ever-Gl

红外光谱仪操作流程

依次打开电脑和红外光谱仪主机电源,双击图标进入软件,查看软件右上角是否为绿色勾点。将实验设置到光学台上,看最大值是否正常,说明仪器稳定,然后开始数据采集。左起第二个图标收集背景,等待背景扫描完成。将压片或其他投影样品放入投影样品架,并关闭样品箱。单击左边第三个图标采集样本,输入样本名称,然后单击确定

硝基红外光谱特征有哪些?

  红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。  当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动

近红外光谱的反射技术

近红外光照射时,频率相同的光线和基团发生共振现象,光的能量通过分子偶极矩的变化传递给分子。近红外光的频率和样品的振动频率不相同,该频率的光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内减弱,而且另外一些波长范

醇和酚的红外光谱特征

  羟基化合物有三个特征吸收带,即νO-H , νC-O,δO-H。  1、 νO-H   游离的醇和酚的νO-H在3700-3500cm-1以内(峰尖、强),缔和的羟基在3500-3200cm-1以内峰形强而宽。大部分是以氢键缔和的形式存在,只有在气相和非极性溶剂中,很稀的溶液内减少分子间氢键,出

近红外与中红外光谱分析的区别

我国对近红外光谱技术的研究及应用起步较晚,除一些专业分析工作人员以外,近红外光谱分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套近红外光谱分析技术(近红外光谱分析仪器、化学计量学软件、应用模型)的公

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。180

近红外与中红外光谱分析的区别

主要区别是波长不同,应用领域不同。红外吸收光谱法是定性鉴定化合物及其结构的重要方法之一,在生物学、化学和环境科学等研究领域发挥着重要作用。无论样品是固体、液体和气体,纯物质还是混合物,有机物还是无机物,都可以进行红外分析。红外光谱法广泛应用于高分子材料、矿物、食品、环境、纤维、染料、粘合剂、油漆、毒

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。