怎么将红外光谱图换成波数与吸光度

波数的话,一般是10000除以波长(nm),然后得到 波数cm-1;吸光度的话,如果你有透过率值,那么吸光度可以用 log(1/T)计算得到......阅读全文

近红外与中红外光谱分析的区别

我国对近红外光谱技术的研究及应用起步较晚,除一些专业分析工作人员以外,近红外光谱分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套近红外光谱分析技术(近红外光谱分析仪器、化学计量学软件、应用模型)的公

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。180

近红外与中红外光谱分析的区别

  近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。 

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。   

近红外与中红外光谱分析的区别

主要区别是波长不同,应用领域不同。红外吸收光谱法是定性鉴定化合物及其结构的重要方法之一,在生物学、化学和环境科学等研究领域发挥着重要作用。无论样品是固体、液体和气体,纯物质还是混合物,有机物还是无机物,都可以进行红外分析。红外光谱法广泛应用于高分子材料、矿物、食品、环境、纤维、染料、粘合剂、油漆、毒

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。180

红外光谱-紫外光谱-拉曼光谱和核磁共振光谱的区别

一般这些测试手段都是联用的,MS用来提供化合物的相对分子质量,化学式,某些官能团等,注意,没有结构;NMR常用的就两种,H谱和C谱,H谱含氢基团的个数、类型等以及某个基团和其他基团的关系,C谱:碳原子数及C的归属及化合物类型,很明显H谱和C谱是需要联用的,注意对比MS;IR,很简单了,只是官能团,可

紫外光谱仪与红外光谱仪

 紫外光谱仪是物质中分子吸收200-800nm光谱区内的光而产生的。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因如受光、热、电的激发而从一个能级转到另一个能级,称为跃迁。当

科研级红外光谱仪的光谱吸收常识

  科研级红外光谱仪具有优异的性能、良好的可靠性、完美的稳定性和极强的抗干扰能力;使用金反射镜,反射率比铝镜高5%以上;抗氧化性强,光学性能更稳定。  光通过某些透明物质(固体、液体或气体)时,其中某些频率的光会被选择地吸收而使其强度减弱,称为物质对光的吸收现象。原子、分子或离子具有不连续的、数目有

拉曼光谱和红外光谱有什么区别

1.象形的解释一下,红外光谱是“凹”,拉曼光谱是“凸”。两者互为补充。2.  (1).从本质上面来说,两者都是振动光谱,而且测量的都是基态的激发或者吸收,能量范围都是一样的。  (2).拉曼是一个差分光谱。形象的来说,可乐的价钱是1毛钱,你扔进去1毛钱,你就能得到可乐,这是红外。可是如果你扔进去1块

拉曼光谱和红外光谱有什么区别

拉曼光谱和红外光谱有什么区别?1.象形的解释一下,红外光谱是“凹”,拉曼光谱是“凸”。两者两者互为补充。2.(1)从本质上面来说,两者都是振动光谱,而且测量的都是基态的激发或者吸收,能量范围都是一样的。(2)拉曼是一个差分光谱。形象的来说,可乐的价钱是1毛钱,你扔进去1毛钱,你就能得到可乐,这是红外

简单介绍拉曼光谱与红外光谱的区别

  拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。  红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中

拉曼光谱与红外光谱的区别和联系

拉曼光谱与红外光谱的区别:1.区别:红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。拉曼光谱是一种阶数更高的光子

石墨烯拉曼光谱测试详解(一)典型拉曼光谱图

就石墨烯的研究来说,确定其层数以及量化无序性是至关重要的。激光显微拉曼光谱恰好就是表征上述两种性能的标准理想分析工具。通过测量石墨烯的拉曼光谱我们可以判断石墨烯的层数、堆垛方式、缺陷多少、边缘结构、张力和掺杂状态等结构和性质特征。本文材料+小编将为大家揭秘石墨烯拉曼光谱测试。2004年英国曼彻斯特大

近红外光谱仪的近红外光谱分析技术注意事项

 近红外分析技术的一个重要特点就是技术本身的成套性,即必须同时具备三个条件:  (1)各项性能长期稳定的近红外光谱仪,是保证数据具有良好再现性的基本要求;  (2)功能齐全的化学计量学软件,是建立模型和分析的必要工具;  (3)准确并适用范围足够宽的模型。  这三个条件的有机结合起来,才能为用户真正

实验室分析仪器红外光谱仪红外光谱的分区

通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~1000μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。近红外光谱仪由于绝大多数有机物和无机物的基

第三届光谱网络研讨会——拉曼光谱-、红外/近红外技术专场

  分析测试百科网讯 2017年5月16-18日,“第三届光谱网络研讨会(eCS 2017)”召开,邀请了30余位国内知名光谱专家参与演讲。17日的光谱网络研讨会上,举办“拉曼光谱技术研究进展”和“红外/近红外技术研究进展”的专场研讨会,为参会观众带来精彩的演讲报告。第二军医大学 陆峰教授  上午的

红外光谱仪的使用及固体、液体样品的红外光谱分析

红外光谱仪的使用及固体、液体样品的红外光谱分析一、实验目的 1.了解AVATAR-360 FT-IR光谱仪的使用方法;2.学习固体样品压片制样的方法;3.学习用ATR附件测定液体化合物红外光谱的方法;4.测定季戊四醇和环己酮的红外光谱,了解如何从红外光谱图中识别基团以及如何从这些基团确定未知物的主要

红外光谱分析法红外光谱峰的位置、峰数与强度

1.位置:由振动频率决定,化学键的力常数 K 越大,原子折合质量 m 越小,键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低波数区(高波长区);2.峰数:分子的基本振动理论峰数,可由振动自由度来计算,对于由 n 个原子组成的分子,其自由度为3 n3n= 平动自由度+振动自由度+转

我国首次拍到不同粒径石墨发光光谱图

  中国科学家在保证石墨完整性基础上获取其发光现象,并拍摄到不同粒径的发光“光谱图”,这在世界纳米碳材料领域尚属首次。  在苏州近日举行的第四届新型金刚石与纳米碳材料国际学术研讨会上,苏州大学功能纳米与软物质研究院教授康振辉介绍了其领衔团队的最新研究成果――《水溶性的荧光碳量子点和催化剂设

拉曼光谱仪测试原理图

拉曼光谱(Raman spectra) ,是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。最常用的红外及拉曼光谱区域波长是2.5~25μm。(中红外区)

如何解读拉曼光谱谱图信息

这要掌握丰富的经验,目前国内在拉曼行业研究的人有限,也在刚刚起步,

怎么从荧光光谱图判断荧光熄灭

用荧光光谱只能得到稳态法的荧光猝灭信息。  也就是说,先检测一份纯样品的荧光光谱,然后再检测一份加入猝灭剂后的样品的荧光光谱,对比前后两次检测结果的区别。一般来说,具有荧光猝灭现象的光谱会比纯样品的荧光强度低很多,甚至检测不到荧光峰。  另外,如果你的实验室有脉冲激光器和响应时间足够快的数据采集卡(

红外光谱仪和红外测油仪是同种仪器吗

红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光

红外光谱仪和红外测油仪是同种仪器吗

红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光

红外光谱法的特点和产生红外吸收的条件

红外光谱法的特点:特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。产生红外吸收的条件:1、辐射后具有能满足物质产生振动跃迁所需的能量。2、分子振动有瞬间偶极距变化。当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频

红外光谱法的特点和产生红外吸收的条件

红外光谱法的特点:特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。产生红外吸收的条件:1、辐射后具有能满足物质产生振动跃迁所需的能量。2、分子振动有瞬间偶极距变化。当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频

解析NIR近红外光谱仪的在线光谱技术

传统光谱技术是以光谱仪为中心考虑问题、解决问题的技术。在线光谱技术则完全相反,是完全以被测样品为中心考虑问题、解决问题的技术。由此,带来了在线光谱仪器设备设计开发的革命性变化:1.采用柔性光纤采光技术,以适应被测样品的复杂形状和位置;2.采用小型化全固定件光学设计,以适应高震动、狭窄空间等复杂的工况

科研级红外光谱仪的光谱技术几大优势

  科研级红外光谱仪具有高的灵敏度和稳定性。不但外形小巧,占地面积小,而且配备自动除湿装置,具有很好的防潮性能,易于维护。除了硬件上的优势外,软件标配了分析程序和有效性程序报告,能够在各个领域发挥强大的作用。  科研级红外光谱仪运用的光谱分析技术有哪些优势呢?  1.无破坏性  无破坏性是该技术一大

解析NIR近红外光谱仪的在线光谱技术

 NIR近红外光谱仪产品介绍:光谱技术正在经历一场革命,从实验室走向现场(生产线,实验场和自然环境)。以往绝大部分光谱仪器都局限于实验室内,将采来的样品经过切割、粉碎、压片、研磨、溶解、稀释、萃取或化学反应等处理手段后放在仪器的固定样品室内进行测量分析。由于这些光谱仪器庞大笨重,很难到现场去工作。但