炔烃的红外光谱特征

炔烃:有三个特征带: ν≡C-H ,δ≡C-H , ν C≡C 1、 ν≡C-H 在四氯化碳溶液中位于3320-3310cm-1,强峰,固体或液体时在3300-3250cm-1。峰形较窄,易于OH和NH区别开。 2、 δ≡C-H ≡C-H的面外弯曲振动通常在900-610cm-1出现一宽的谱带,有时在1375-1225cm-1处,出现它的倍频峰,此峰也很宽,但很弱。 3、 ν C≡C 碳碳叁键的力常数比碳碳双键的高得多,所以C≡C的伸缩振动出现在高波数区域。一般一元取代炔烃 RC≡CH 的νC≡C在2140-2100cm-1,二元取代炔烃在 RC≡CR1 的νC≡C 在2260-2190cm-1,乙炔和二取代乙炔因分子对称,没有VC≡C的吸收峰。所以看不到νC≡C的谱带,不一定表示没有C≡C。......阅读全文

炔烃的红外光谱特征

  炔烃:有三个特征带:   ν≡C-H ,δ≡C-H , ν C≡C  1、 ν≡C-H   在四氯化碳溶液中位于3320-3310cm-1,强峰,固体或液体时在3300-3250cm-1。峰形较窄,易于OH和NH区别开。  2、 δ≡C-H   ≡C-H的面外弯曲振动通常在900-610cm-1

芳香烃的红外光谱特征

  芳香族化合物有三种特征吸收带:即苯环上的芳氢伸缩振动,面外弯曲振动和骨架振动。   1、芳环上的νC-H   3010-3080cm-1(m)   2、芳环的骨架伸缩振动νC-C   1650-1450cm-1(m)出现2~4个吸收峰,由于芳环为一共轭体系,其C=C伸缩振动频率位于双键区的低频一

手性有机酸催化炔烃

  在国家自然科学基金项目(批准号:92056104、21772161、21702182和21873081)的资助下,厦门大学叶龙武教授与浙江大学洪鑫研究员合作,在炔烃的手性有机酸催化方面取得重要进展。研究成果以“通过直接活化炔酰胺的手性布朗斯特酸催化不对称去芳构化反应(Asymmetric dea

综述:基于炔烃的共轭高分子

由含炔单体合成共轭高分子的聚合方法  共轭高分子的众多优异性能吸引了全世界的科学工作者投身于其合成方法的研究,以开发具有更丰富的结构和功能的高分子。通常,有机共轭高分子的构建基元是含双键或者三键的化合物,例如聚乙炔、聚苯乙炔及其衍生物。有些含杂原子如硼、氮、硅、硫等的高分子,会形

双键的红外吸收峰位置

简单的方法是光谱的方法:1、红外光谱.双键吸收峰在1680-1610cm-1,三键吸收峰在2260-2100cm-1.2、核磁共振氢谱.双键碳原子上的氢化学位移在5-7ppm,三键碳原子上的氢化学位移在2-4ppm.3、核磁共振碳谱.双键碳化学位移约20ppm,三键碳化学位移约5ppm.如果用化学方

双键的红外吸收峰位置

简单的方法是光谱的方法:1、红外光谱.双键吸收峰在1680-1610cm-1,三键吸收峰在2260-2100cm-1.2、核磁共振氢谱.双键碳原子上的氢化学位移在5-7ppm,三键碳原子上的氢化学位移在2-4ppm.3、核磁共振碳谱.双键碳化学位移约20ppm,三键碳化学位移约5ppm.如果用化学方

碳四炔烃加氢回收丁二烯获突破

  从中国石油石油化工研究院了解到,碳四炔烃加氢回收丁二烯技术进行技术已经完成工艺技术包的编制,基本具备工业化条件,预计2014年年底将进行首次工业化应用。此项技术在中国石油全面推广后,仅丁二烯回收一项即可带来数亿元收益,并显著减少环境污染。   裂解碳四是生产丁二烯的主要原料,在进行丁

兰州化物所羰基炔烃不对称还原偶联研究取得进展

  过渡金属催化的还原偶联反应是以亲电试剂为原料构建新的碳-碳键的简单直接的方法。近年来,不饱和π键之间的不对称还原偶联反应得到了较大发展,其中,炔烃作为一种简单易得的原料受到了广泛关注。在金属铑或镍催化下,1,3-二炔、1,3-烯炔等炔烃在还原剂存在下可与醛发生不对称还原偶联制备手性烯丙醇化合物。

丁二烯回收获突破-采用碳四炔烃加氢法

  昨日,记者从中国石油石油化工研究院了解到,碳四炔烃加氢回收丁二烯技术进行技术已经完成工艺技术包的编制,基本具备工业化条件,预计2014年年底将进行首次工业化应用。此项技术在中国石油全面推广后,仅丁二烯回收一项即可带来数亿元收益,并显著减少环境污染。    裂解碳四是生产丁二烯的主要原料,在进行丁

配位氢化物催化剂实现炔烃加氢制烯烃

近日,中国科学院大连化学物理研究所研究员陈萍、郭建平团队与厦门大学副教授吴安安团队合作,在催化炔烃选择加氢反应研究中取得新进展。合作团队利用金属配位氢化物,发展出一类新型碱土金属钯基三元氢化物催化剂,并应用于炔烃选择性加氢反应中,实现高选择性催化炔烃加氢制烯烃。相关研究成果发表于《美国化学会志》。炔

镍催化炔烃的高效氢氰化反应方面取得新进展

  腈类化合物是一类非常重要的有机合成中间体,广泛存在于医药、农药、除草剂、杀虫剂、染料、香料以及天然产物中。有机腈类化合物可以进行多种化学转换反应,如可以转化为羧酸、醛、酮、酯、酰胺、胺、四唑以及其它氮杂环化合物等。因此有机腈类化合物的合成引起了人们广泛关注和浓厚的研究兴趣。过渡金属催化的炔烃的氢

红外的红外光谱

红外光谱(IR)是一种吸收光谱,对有机化合物的鉴定和结构分析有鲜明的特征性。任何两个不同的化合物(除光学异构外)一般没有相同的红外光谱,因此运用红外光谱可以确定两个化合物是否相同。此外,一些官能团,虽然在分子中的地位不同,但也可以在一定的波长范围内发生吸收。根据化合物的红外光谱可以找出分子中含有哪些

我国学者在炔烃的手性有机酸催化方面取得进展

手性Brønsted酸活化炔基构筑手性螺环  在国家自然科学基金项目(批准号:92056104、21772161、21702182和21873081)的资助下,厦门大学叶龙武教授与浙江大学洪鑫研究员合作,在炔烃的手性有机酸催化方面取得重要进展。研究成果以“通过直接活化炔酰胺的手性布朗斯特酸催化不对称

我所提出钯纳米团簇炔烃选择性加氢新策略

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202403/t20240313_7025215.html近日,我所化石能源与应用催化研究部金催化剂设计与选择氧化研究组(DNL0809组)刘超副研究员、黄家辉研究员团队与我所化学动力学研究室化学动力学研究中心(1102组)

低碳炔烃选择性加氢催化剂设计研究获新进展

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/518153.shtm近日,华东理工大学催化反应工程团队段学志、曹约强,清华大学王笑楠,上海交通大学刘晰合作,在数据驱动的高性能低碳炔烃选择性加氢催化剂设计与创制方面取得新进展,基于机器学习构建的催化剂高通

芳香烃的光谱特征是什么

  芳香烃的特征吸收主要是:芳环C-H伸缩振动(υ=CH)、C-H弯曲振动(γ=CH)、C=C骨架振动(υC=C)。

新异相催化剂实现末端烯烃和炔烃到伯醇的转化

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507618.shtm近日,暨南大学教授宁国宏/李丹团队开发出光敏性金属?有机框架串联催化末端烯烃和炔烃制备伯醇。相关研究以封面文章的形式发表于《德国应用化学国际版》,并被选为热点文章。暨南大学硕士研究生林

成都生物所发现利用氧气催化氧化炔烃构建酰胺的新方法

  酰胺官能团是蛋白质的基本结构单元,是构建多功能聚合物,生物材料和药物分子的最重要的砌块之一。传统的酰胺合成方法主要依靠羧酸及其衍生物与胺的缩合反应,它们大都需要多制备步骤和活化原料,反应条件苛刻。目前为止,仅在一些生物氧酶体系中发现利用氧气作为氧源来合成酰胺官能团。直接利用金属催

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

怎么分析红外光谱图

问题一:怎么看红外光谱图? (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),(2)分析3300~2800cm

怎么分析红外光谱图

问题一:怎么看红外光谱图? (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),(2)分析3300~2800cm

怎么分析红外光谱图

问题一:怎么看红外光谱图? (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),(2)分析3300~2800cm

Angew.-Chem.:光敏性金属−有机框架串联催化末端烯烃和炔烃制备伯醇

  近年来,精细化工和制药行业对伯醇的需求不断增长。然而,根据马氏规则,末端烯烃或炔烃的催化水解会选择性生成仲醇。因此,自1993年以来,末端烯烃的反马氏水解一直被认为是一个挑战。在现已开发的催化体系中,硼氢化-氧化工艺仍然是生产伯醇一种有效且常用的方法,该工艺是一个两步反应,过程中需要分离纯化,且