如何计算不同温度下反应的热效应

将0.500gN2H4(l)①2t000048_0007_0在盛有1210gH2O的弹式热量计的钢弹内(通入氧气)完全燃烧荆系统的热力学温度由293.18K上升至294.82K。已知钢弹组件在实验温度时的总热容Cb为848J·K-1。试计算在此条件下联氨完全燃烧所放出的热量。......阅读全文

微波辐射之热效应和非热效应

微波辐射对人体的危害分为「热效应」和「非热效应」二大方面。热效应人体 70% 以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到体内器官的正常工作。体温升高引发各种症状,如心悸、头胀、失眠、心动过缓、白细胞减少,免疫功能下降、视力下降等。产生热效的电磁波功率密度在 10MW/cm²;

如何计算不同温度下反应的热效应

将0.500gN2H4(l)①2t000048_0007_0在盛有1210gH2O的弹式热量计的钢弹内(通入氧气)完全燃烧荆系统的热力学温度由293.18K上升至294.82K。已知钢弹组件在实验温度时的总热容Cb为848J·K-1。试计算在此条件下联氨完全燃烧所放出的热量。

我国学者提出超临界磁压热效应

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/509881.shtm近日,中国科学院大学教授苏刚团队与合作者利用自己发展的精确高效有限温度张量重正化群方法,完整给出了Shastry-Sutherland晶格量子磁性模型的压力—温度相图,发现该相图与水

积雪热效应的定量评估研究新进展

  近日,中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室库威积雪站博士张伟等在Agricultural and forest meteorology上,在线发表了题为Snow cover controls seasonally frozen ground regime on the sou

激光热效应可用于柔性纤维器件组装

  近年来,基于多功能纤维材料科技的快速发展,越来越多种类的纤维具备了传感、光电转换、能量收集及储存的功能。随着对织物类可穿戴电子产品需求的不断增加,多功能纤维状器件与智能纤维织物为其提供了一种新的解决方案。然而,柔性纤维内部各种功能材料的精确高效定位,连接与组装等难题阻碍了纤维器件的大规模应用。 

关于碳素光治疗仪的热效应的介绍

  生物中的偶极子和自由电磁场的作用下,有按电磁场方向排列的趋势。在此过程中,引发分子,原子无规则运动加剧而产生热。当红外辐射有足够强度时,即超过了生物体的散热能力,就会使被照射机体局部温度升高在,这是红外的热效应。  激活了生物大分子的活性。在红外光子,特别是2-6微米红外光子的作用下,使生物体的

新颖凝固技术制备具有弹热效应的形状记忆合金

  相比于传统气体压缩制冷,固态制冷以其在节约能源与保护环境方面的独特优势成为最近十几年来的研究热点。基于可逆马氏体相变材料在外加力的激励作用下的弹热效应制冷非常具有应用潜力。弹热效应的温变大小、临界应力、相变滞后、疲劳特性等关键性能指标,不仅依赖于相变熵和化学键强度等材料内秉属性,也与材料的微观缺

研究发现激光热效应组装柔性纤维器件取得进展

  近年来,基于多功能纤维材料科技的快速发展,更多种类的纤维具备了传感、光电转换、能量收集及储存等功能。随着对织物类可穿戴电子产品需求的不断增加,多功能纤维状器件与智能纤维织物为其提供了一种新的解决方案。但目前柔性纤维内部各种功能材料的精确高效定位、连接与组装等难题,阻碍了纤维器件的大规模应用。  

超声波焊接机的热效应和化学效应介绍

  热效应  由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。  化学效应  超声波的作用可促使发生或加速某些化学反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。这些现象的发生总与空化作用相伴随。超声波还可加速许多化学

新型的基于激光热效应的纤维内微粒精确操控技术

  近年来,基于多功能纤维材料科技的快速发展,更多种类的纤维具备了传感、光电转换、能量收集及储存等功能。随着对织物类可穿戴电子产品需求的不断增加,多功能纤维状器件与智能纤维织物为其提供了一种新的解决方案。但目前柔性纤维内部各种功能材料的精确高效定位、连接与组装等难题,阻碍了纤维器件的大规模应用。  

超高真空俄歇电子能谱原位加热和GaN热效应研究

建立一套基于超高真空俄歇电子能谱的原位加热系统,对GaN薄膜进行热效应研究.随着温度的增加,Ga LMM和Ga MVV的动能减小.利用第一性原理计算,获得理论的GaMVV俄歇谱.加热过程由于晶格热膨胀以及表面原子再构引起价电子态密度发生变化,从而导致价带俄歇谱负移. 

我国学者成功研制具有庞弹热效应的NiMnTiB多晶块体合金

  在国家自然科学基金项目(批准号:51822102,51731005,51527801)等资助下,北京科技大学新金属材料国家重点实验室从道永、王沿东教授团队和西班牙巴塞罗娜大学、美国阿贡国家实验室开展合作研究,发现了NiMnTiB多晶块体合金的庞弹热效应。研究成果以“Colossal Elasto

一种基于激光热效应的纤维内微粒精确操控技术

  近年来,基于多功能纤维材料科技的快速发展,更多种类的纤维具备了传感、光电转换、能量收集及储存等功能。随着对织物类可穿戴电子产品需求的不断增加,多功能纤维状器件与智能纤维织物为其提供了一种新的解决方案。但目前柔性纤维内部各种功能材料的精确高效定位、连接与组装等难题,阻碍了纤维器件的大规模应用。  

南极海冰扩张之谜得解-源自绝热效应和雪层反射

  据美国物理学家组织网8月16日报道,最近10年里,北极海冰逐渐缩小,而南极海冰却有所扩张,全球变暖是否属实?美国佐治亚理工学院研究人员为我们解释了这一看起来矛盾的现象,为何在全球变暖的形势下,南极海冰却在增加。相关研究论文发表在8月16日出版的《美国国家科学院院刊》上。   佐

铋合金可联合AMF加热效应抑制疼痛致敏物质的表达

  大骨缺损患者或骨再生能力较弱的老年患者,需要骨移植材料替代缺失骨。但是自体和异体骨组织来源有限;大部分非金属材料机械性能差;传统的金属材料熔点高、形状可塑性差,并且弹性模量远高于骨组织,容易产生松动。同时,骨缺损刺激周围神经产生疼痛,常见的骨镇痛药物(阿片类药物和非甾体抗炎药)易导致呼吸抑制、肾

芯片热效应成半导体与系统设计一大挑战-IoT让问题更...

芯片热效应成半导体与系统设计一大挑战 IoT让问题更复杂   随着汽车、太空、医学与工业等产业开始采用复杂芯片,加上电路板或系统单芯片(SoC)为了符合市场需求而加入更多功能,让芯片热效应已成为半导体与系统设计时的一大问题。  据SemiconductorEngineering报导,DfRSo

中国科学院大学苏刚发《物理评论快报》:超临界磁压热效应

近日,中国科学院大学苏刚教授团队与合作者利用自己发展的精确高效有限温度张量重正化群方法,完整给出了Shastry-Sutherland晶格量子磁性模型的压力—温度相图,发现该相图与水的相图极为相似,同时发现在临界点上方的超临界区存在一种新奇的量子关联诱导的制冷机制,命名为超临界磁压热效应。该效应给出

物理所开发出有优异微波吸收特性和磁热效应多功能材料

  在高度集成化的电子系统中,对电子器件的抗电磁干扰和电磁兼容提出了更高要求。传统的高频磁性材料已经不能满足现代通讯对电子器件高频化、小型化的发展和信息传输宽带化的要求,也无法有效解决器件之间严重电磁干扰、电磁污染和热量散发问题。   为抑制严重的电磁干扰问题,需要设计和开发具有优异的电磁波吸收材

差热分析仪和差示扫描热量仪的区别在哪里?

差别在于:差热分析仪测量的是试样的放出热量或吸收热量的数值;而差示扫描热量仪测量的是试样相对于参比物质(如在测试温度范围内没有热效应的氧化铝等)在单位时间内的能量之差(或功率之差)。两者横坐标都是温度。而纵坐标,差热分析谱是热效应(吸热或放热),有热效应就出现峰,如果设计成吸热峰向上,放热峰就是向下

差热分析与简单的热分析有何区别

差别在于:差热分析仪测量的是试样的放出热量或吸收热量的数值;而差示扫描热量仪测量的是试样相对于参比物质(如在测试温度范围内没有热效应的氧化铝等)在单位时间内的能量之差(或功率之差)。两者横坐标都是温度。而纵坐标,差热分析谱是热效应(吸热或放热),有热效应就出现峰,如果设计成吸热峰向上,放热峰就是向下

差热分析与简单的热分析有何区别

差热分析仪和差示扫描热量仪不一样!差别在于:差热分析仪测量的是试样的放出热量或吸收热量的数值;而差示扫描热量仪测量的是试样相对于参比物质(如在测试温度范围内没有热效应的氧化铝等)在单位时间内的能量之差(或功率之差)。两者横坐标都是温度。而纵坐标,差热分析谱是热效应(吸热或放热),有热效应就出现峰,如

双头面筋测定仪对面筋蛋白的分析研究

  面筋蛋白是小麦的主要贮藏蛋白,是由麦胶蛋白和麦谷蛋白组成的聚合体。双头面筋测定仪分析面筋蛋白是大分子链蛋白,具有不同于其他蛋白的独特的黏弹性及特殊的理化性质,例如溶解度低、乳化性差等。    微波对蛋白结构的影响主要有两方面:一是微波热效应,认为绿荧光蛋白荧光光谱500~540nm段的变化主要是

关于差示扫描量热仪的基本介绍

  差示扫描量热仪,是一种较大型的差示扫描量热仪(DSC)。  差示扫描量热仪应用范围:高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度。  差示扫描量热仪 (Differential Scanning Calorim

量热仪的具体应用介绍

 量热仪材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。差示扫描量热仪应用范围:高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度...。  

量热仪的具体应用介绍

量热仪材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。差示扫描量热仪应用范围:高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度...。 差示

对于差热分析仪您会感到陌生吗?

  差热分析仪主要由温度控制系统和差热信号测量系统组成,辅之以气氛和冷却水通道,测量结果由记录仪或计算机数据处理系统处理。  差热分析仪可广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天

热分析技术的应用

  通过物质在加热过程中出现的各种热效应,如脱水、固态相变、熔化、凝固、分解、氧化、聚合等过程中产生放热或吸热效应来进行物质鉴定,了解物质在不同温度的热量、质量等变化规律是非常重要的材料研究手段。例如,陶瓷材料的主要原料来自天然矿物,在陶瓷工业生产中,对这些天然矿物原料的鉴定,以及了解它们在加热过程

关于基因诱变的微波诱变剂的介绍

  微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升,从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应

DSC热分析仪开始温度的选择

DSC实验的开始温度通常要比*个热效应低升温速率值的3倍(3β),以便*个热效应之前的基线稳定。例如若升温速率10K/min,*个热效应出现在80℃,那么实验的开始温度至少要比80℃低3X10=30(℃),即至少要从50℃开始实验。

差示扫描量热仪规范使用的介绍

差示扫描量热仪差示扫描量热仪应用范围有: 对材料氧化诱导时间的测定,高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度等。实验对象为:固态、液态、粘稠试样,除了气体。将试样和参比物分别放入坩埚,置于炉中进行程序加热,改变