扫描电子显微镜的特点

扫描电镜虽然是显微镜家族中的后起之秀, 但由于其本身具有许多独特的优点, 发展速度是很快的。 [7] 1 仪器分辨率较高, 通过二次电子像能够观察试样表面6nm左右的细节, 采用LaB6电子枪, 可以进一步提高到3nm。 [7] 2 仪器放大倍数变化范围大, 且能连续可调。因此可以根据需要选择大小不同的视场进行观察, 同时在高放大倍数下也可获得一般透射电镜较难达到的高亮度的清晰图像。 [7] 3 观察样品的景深大, 视场大, 图像富有立体感, 可直接观察起伏较大的粗糙表面和试样凹凸不平的金属断口象等, 使人具有亲临微观世界现场之感。 [7] 4 样品制备简单, 只要将块状或粉末状的样品稍加处理或不处理, 就可直接放到扫描电镜中进行观察, 因而更接近于物质的自然状态。 [7] 5可以通过电子学方法有效地控制和改善图像质量, 如亮度及反差自动保持, 试样倾斜角度校正, 图象旋转, 或通过Y调制改善图象反差的宽容度, 以......阅读全文

扫描电子显微镜的工作原理

扫描电子显微镜的工作原理:扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇

扫描电子显微镜的主要类型

扫描电子显微镜类型多样,不同类型的扫描电子显微镜存在性能上的差异。根据电子枪种类可分为三种:场发射电子枪、钨丝枪和六硼化镧  。其中,场发射扫描电子显微镜根据光源性能可分为冷场发射扫描电子显微镜和热场发射扫描电子显微镜。冷场发射扫描电子显微镜对真空条件要求高,束流不稳定,发射体使用寿命短,需要定时对

简述扫描电子显微镜的应用

  进行动态观察。在扫描电子显微镜中,成象的信息主要是电子信息。根据近代的电子工业技术水平,即使高速变化的电子信息,也能毫不困难的及时接收、处理和储存,故可进行一些动态过程的观察。如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以通过电视装置,观察相变、断裂等动态的变化过程。10从试样

扫描电子显微镜的应用范围

  扫描电子显微镜是一种多功能的仪器,具有很多优越的性能,是用途最为广泛的一种仪器,它可以进行如下基本分析: [8]  (1)三维形貌的观察和分析; [8]  (2)在观察形貌的同时,进行微区的成分分析。 [8]  ①观察纳米材料。所谓纳米材料就是指组成材料的颗粒或微晶尺寸在0. 1~100 nm范

台式扫描电子显微镜的介绍

台式扫描电子显微镜(Desktop Scanning Electron Microscope, Desktop SEM)的概念是由美国FEI公司(1997年原FEI和飞利浦电子光学合并而成)提出的,并于2006年正式发布了旗下的Phenom台式扫描电镜,而后于2009年成立Phenom-World公

扫描电子显微镜的主要结构

扫描电子显微镜的主要结构1.电子光学系统:电子枪;聚光镜(*、第二聚光镜和物镜);物镜光阑。2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。3.信号探测放大系统:探测二次电子、背散射电子等电子信号。4.图象显示和记录系统:早期SEM采用显象管、照相机等。数字式SEM采用电脑系统进行图象显

扫描电子显微镜的基本介绍

  扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动 (声子)、电子振荡 (等离子体)。原则上讲,

扫描电子显微镜的应用概述

  扫描电子显微镜 (scanning electron microscope, SEM) 是一种用于高分辨率微区形貌分析的大型精密仪器 [3] 。具有景深大、分辨率高, 成像直观、立体感强、放大倍数范围宽以及待测样品可在三维空间内进行旋转和倾斜等特点。另外具有可测样品种类丰富, 几乎不损伤和污染原

台式扫描电子显微镜的组成

  真空系统:一般采用机械泵与分子泵联动  电子枪:一般为CeB6( 六硼化铈)或钨灯丝,其中钨灯丝的寿命较短,仅为40-100小时,需频繁更换,CeB6灯丝寿命超过1500小时,且亮度更高。目前尚没有采用 场发射(Field Emission)的台式扫描电镜。  电磁透镜  探测器: 背散射电子或

扫描电子显微镜的工作原理

扫描电子显微镜的工作原理:扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇

扫描电子显微镜的工作原理

扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子

扫描电子显微镜的工作原理

扫描电子显微镜的工作原理:扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇

扫描电子显微镜的工作原理

扫描电子显微镜的工作原理:扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇

环境扫描电子显微镜的应用

 环境扫描电子显微镜的应用  1、在矿物学的领域的应用  不同矿物在扫描电镜中会呈现出其特征的形貌,这是在扫描电镜中鉴定矿物的重要依据。如高岭石在扫描电镜中常呈假六方片状、假六方板状、假六方似板状;埃洛石常呈管状、长管状、圆球状;蒙脱石为卷曲的薄片状;绿泥石单晶呈六角板状,集合体呈叶片状堆积或定向排

扫描电子显微镜的应用范围

由于扫描电子显微镜具有上述特点和功能,所以越来越受到科研人员的重视,用途日益广泛。扫描电子显微镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等

扫描电子显微镜的应用介绍

扫描电子显微镜(scanning electron microscope,SEM)是一种用于高分辨率微区形貌分析的大型精密仪器 。具有景深大、分辨率高,成像直观、立体感强、放大倍数范围宽以及待测样品可在三维空间内进行旋转和倾斜等特点。另外具有可测样品种类丰富,几乎不损伤和污染原始样品以及可同时获得形

扫描电子显微镜的原理结构

扫描电子显微镜具有由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。 末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子

扫描电子显微镜的原理结构

扫描电子显微镜具有由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。 末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子

扫描电子显微镜的发展简史

  1932年,Knoll 提出了SEM可成像放大的概念,并在1935年制成了极其原始的模型。  1938年,德国的阿登纳制成了第一台采用缩小透镜用于透射样品的SEM。由于不能获得高分辨率的样品表面电子像,SEM一直得不到发展,只能在电子探针X射线微分析仪中作为一种辅助的成像装置。此后,在许多科学家

扫描电子显微镜的功能介绍

扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。入射的电子导致样本表面被激发出次级电子。显微镜观察的是这些每个点散射出来的电子,放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。图像为立体形象,反映了

扫描电子显微镜的工作原理

扫描电子显微镜的工作原理:扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇

扫描电子显微镜的优点介绍

电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。扫描电子显微镜的优点介绍扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。

扫描电子显微镜的研发历史

1932年,Knoll 提出了SEM可成像放大的概念,并在1935年制成了极其原始的模型。1938年,德国的阿登纳制成了第一台采用缩小透镜用于透射样品的SEM。由于不能获得高分辨率的样品表面电子像,SEM一直得不到发展,只能在电子探针X射线微分析仪中作为一种辅助的成像装置。此后,在许多科学家的努力下

扫描电子显微镜的工作原理

扫描电子显微镜(Scanning Electron Microscope, SEM)的工作原理是利用极细的聚焦电子束在样品表面作光栅扫描,电子束与样品表面相互作用产生各种信号,包括:二次电子、背散射电子、俄歇电子、特征X射线等,这些信号被探测器接收放大显示在显示屏上,可用于分析样品的微观形貌、晶体特

扫描电子显微镜的结构原理

扫描电子显微镜电子枪发射出的电子束经过聚焦后汇聚成点光源;点光源在加速电压下形成高能电子束;高能电子束经由两个电磁透镜被聚焦成直径微小的光点,在透过最后一级带有扫描线圈的电磁透镜后,电子束以光栅状扫描的方式逐点轰击到样品表面,同时激发出不同深度的电子信号。此时,电子信号会被样品上方不同信号接收器的探

扫描电子显微镜的原理结构

   扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。    扫描电子显微镜具有由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成

扫描电子显微镜的技术缺陷

1.在电子显微镜中样本必须在真空中观察,因此无法观察活样本。随着技术的进步,环境扫描电镜将逐渐实现直接对活样本的观察;2.在处理样本时可能会产生样本本来没有的结构,这加剧了此后分析图像的难度;3.由于电子散射能力极 强,容易发生二次衍射等;4.由于为三维物体的二维平面投影像,有时像不唯 一;5.由于

扫描电子显微镜的组成结构

电子枪电子枪用来提供高能电子束,可以说是整台电镜最重要的部件之一。电子枪的质量决定着扫描电镜成像的质量。目前常用的电子枪包括:钨阴极、氧化钇阴极、硼化物(LaB6、CeB6等)阴极等钨阴极:是扫描电镜最常用的发射阴极。采用直径0.2mm左右的钨丝,弯曲成发夹型或“V”字型。当电流流过钨阴极时,钨灯丝

扫描电子显微镜的发展历史

  扫描电镜是用于检验和分析固体微观结构特征的最有用的仪器之一,可以获得高的图像分辨率。场发射电子枪是具有很高的亮度和很小的电子源。扫描电镜的图像反映了样品三维的形貌特征,通过电子和样品的互作用可以研究样品的结晶学、磁学和电学特性。  早在1938年,Von.Ardence将扫描线圈加到透射电子显微

扫描电子显微镜的功能介绍

扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。入射的电子导致样本表面被激发出次级电子。显微镜观察的是这些每个点散射出来的电子,放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。图像为立体形象,反映了