Antpedia LOGO WIKI资讯

透射电子显微镜的简介

电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由照明系统、成像系统、真空系统、记录系统、电源系统5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、 物镜、衍射镜、中间镜、 投影镜、荧光屏和照相机。 电子显微镜是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的理论分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米)。 透射电子显微镜(Transmission electron microscope,缩写TEM),简称透射电镜 [1] ,是把经加速和聚集......阅读全文

赛默飞隆重推出全新紧凑型场发射透射电镜

  赛默飞世尔科技在2017全国电子显微学学术年会举办期间展出全新高效灵活、更适合材料科学研究的Thermo Scientific™ Talos™ F200i场发射透射电子显微镜(S/TEM),并进行现场演示。  2017年10月19日,成都 —— 科学服务领域的世界领导者赛默飞世尔科技(以下简称:

徕创生物扫描电镜检测透射电镜技术服务

透射电镜是一种高分辨率、高放大倍数的显微镜,是材料科学研究的重要手段,能提供极微细材料的组织结构、晶体结构和化学成分等方面的信息。透射电镜的分辨率为0.1~0.2nm,放大倍数为几万~几十万倍。透射电镜简介:透射电子显微镜(Transmission Electron Microscope,简称TEM

西北大学仪器共享平台

  实验室既是科研工作的重要场所,也是培养人才的重要基地。为了有效解决实验室仪器设备使用过程中存在的管理问题,使资源得到充分利用,科研仪器的共享已经成为关键着眼点。我校积极响应国家对科技人才的培养与支持,特推出仪器共享政策,以方便广大师生。以下为具体仪器设备和收费标准。  西北大学仪器共享须知  化

有图有真相 围观别人家的先进材料实验室

  分析测试百科网讯 明亮的落地玻璃窗,琳琅满目的仪器设备,严肃认真的研究人员穿梭忙碌。这是分析测试百科小编对复旦大学先进材料实验室的第一印象。  复旦大学先进材料实验室是教育部“985工程”二期重点建设项目之一,于2005年4月成立,通过物理、化学、生物、材料、信息、

光学显微镜分类

显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的杨森父子所创。现在的光学显微镜可把物体放大1600倍,分辨的小极限达0.1微米,国内显微镜机械筒长度一般是1

2009年度北京市电子显微学年会通知

  尊敬的各位老师:你们好!   为推动北京及周边省市广大电子显微学的学术及技术水平,促进电子显微学工作者在材料科学、生命科学等领域的应用、发展和交流,一年一度的新老朋友相互聚会的“2009年度北京市电子显微学年会” 将于2010年1月18日(星期一),在北京西直门外大街138号,北京天文馆B楼二

经典材料分析七种方法:成分,光谱,质谱 ,能谱

  材料的逆向分析是现行材料研发中的重要的手段,也是实现材料研发中的最经济、最有效的的研发手段。如何实现材料的逆向分析,从认识材料的分析仪器着手。  成分分析简介  成分分析技术主要用于对未知物、未知成分等进行分析,通过成分分析技术可以快速确定目标样品中的各种组成成分是什么,帮助您对样品进行定性定量

2016北京市电子显微学年会召开 探讨电镜技术应用新进展

  分析测试百科网讯 2016年12月20日,2016年度北京市电子显微学年会在北京天文馆召开,会议旨在推动北京及周边省市广大电子显微学学术及技术水平,促进电子显微学工作者在材料科学、生命科学等领域的应用、发展和交流。来自电子显微学领域相关单位的200余人参加了此次会议。2016年度北京市电子显微学

TEM、SEM傻傻分不清?这份解读值得收藏

1简介透射电子显微镜(TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。 扫描

2011年度北京市电子显微学年会在国家图书馆成功举行

  报告题目:GL-69系列离子减薄仪的最新进展   报告人:钢铁研究总院钢拓冶金技术研究所李树强先生 钢铁研究总院钢拓冶金技术研究所 李树强 先生   在透射电子显微学的研究领域,样品制备技术是极为重要的环节。目前用离子减薄技术制备透射电镜的薄膜样品是最为理想的方法,主要有一下几个优

北京化工大学刘绪博Science发文,发现一种新型磁性液体

  北京时间7月19日,Science在线发表了北京化工大学软物质高精尖中心最新研究成果 “Reconfigurable ferromagnetic liquid droplet” ,即可重构的铁磁性液滴,或称液态磁铁。该研究发现一种新型磁性液体,通过控制磁性纳米粒子在水油界面的自组装,最终成功引导

高能重离子在单晶SrTiO3中产生的离子轨道研究

引言高能重离子在各种氧化物陶瓷中沿其轨迹会产生高度缺陷或无定形结构,这被称为潜在的离子轨道。离子轨道的直径大都在纳米级,轨道长度可达几十微米,这种极大的高宽比对先进纳米结构的制造非常具有吸引力。潜在的离子轨迹可以用作电子电导率的纳米通道,并且蚀刻轨迹已经被用于薄膜中导电纳米线生长的模板。然而

Nat Com重磅成果丨miR-27a在结核病中机制研究新发现

  结核病(TB,Tuberculosis)是结核杆菌(Mtb,Mycobacterium tuberculosis)感染导致的疾病。根据感染部位不同分为肺结核、淋巴结核、骨骼结核等,这是一种发病率较高、传染性较强的疾病。据世界卫生组织统计,2016年全球范围内有1040万新病例并且有170万死亡。

通过钙钛矿构筑第三类纳米晶体——“超晶格”

  【研究背景】  钙钛矿晶体是目前广受关注,其至少由三种不同的离子组成,以卓越的电学和光学特性而闻名,在太阳能电池和光电器件中具有突出的应用潜力。有研究表明,当钙钛矿的纳米立方体与其他材料的纳米球结合时,无论是否有第三类纳米晶体,所获得的各种纳米结构都可以排列成三维“超晶格”,其排列方式与钙钛矿中

导电原子力显微镜的原理及应用

导电原子力显微镜(CAFM)是传统原子力显微镜的衍生物,除了力敏感器和力探测器,扫描所用的针尖是导电的,附加一个灵敏电流表。导电原子力显微镜在获取样品表面形貌信息的同时,可以获得和形貌一一对应的局域电导信息。导电原子力显微镜简介  自应用以来,导电原子力显微镜主要用来对电学传输性质各向异性的固体材料

云序客户Nat Com重磅成果miR-27a在结核病中机制研究新发现

  结核病(TB,Tuberculosis)是结核杆菌(Mtb,Mycobacterium tuberculosis)感染导致的疾病。根据感染部位不同分为肺结核、淋巴结核、骨骼结核等,这是一种发病率较高、传染性较强的疾病。据世界卫生组织统计,2016年全球范围内有1040万新病例并且有170万死亡。

Poseidon Select简介

Poseidon Select简介Poseidon Select能在完全液体的环境下对试样进行动态成像和电化学研究,可以在感兴趣的区域加入加热包或电化学模块。Poseidon Select系统是可自行配置和拓展的,这些模块可以直接安装或以后需要时再安装。液相显微镜以前一直致力于提

致癌物-石棉的有效检测方法

一、石棉简介石棉是天然纤维状硅酸盐矿物质的总称,其化学成分主要为硅、氧、氢、钠、镁、钙和铁等元素。石棉纤维具有低导电性、耐火性、抗拉强度高、耐酸碱腐蚀、吸声、吸热等多种优秀的性能,因此广泛应用于绝缘材料、消防、建筑、汽车、造船、密封材料等领域。但是石棉纤维释放到空气中,人体吸入石棉纤维会引起石棉肺、

2019年亚太材料科学院院士名单出炉!我国20位入选

  2019年6月27日,两年一次的亚太材料科学院(Asian Pacific Academy of Materials,APAM)会议在新加坡南洋理工大学召开。  会议选举出新的院士(Academician)32名,副院士(Associate Academician)12名。其中我国大陆有16人当

2013年度北京电子显微学年会大会报告(一)

  2013年12月24日, 2013年度北京市电子显微学年会在北京天文馆隆重召开,会上,来自中科院、北京大学、北京工业大学、北京建筑大学、钢铁研究总院等多位专家学者带来了关于电镜在教学科研、纳米材料、生物医药、探伤等方面应用的精彩报告,科扬、FEI、蔡司、布鲁克、牛津

免疫细胞化学与图像分析

在细胞生物学中,一个常见的问题是如何获取与细胞功能相关的各种定量测量信息。在免疫细胞化学中也存在同样的问题。制作免疫细胞化学标本环节 较多,只要有一个环节 失误就会影响实验结果,除了需要精制的药品外,还需要熟练的技术。那么,做成了理想的标本后,如何进行观察,才能获得尽量多的的各种定量信息,而且使这些

免疫细胞化学与图像分析

在细胞生物学中,一个常见的问题是如何获取与细胞功能相关的各种定量测量信息。在免疫细胞化学中也存在同样的问题。制作免疫细胞化学标本环节 较多,只要有一个环节 失误就会影响实验结果,除了需要精制的药品外,还需要熟练的技术。那么,做成了理想的标本后,如何进行观察,才能获得尽量多的的各种定量信息,而且使这些