硅微条探测器的工作原理

硅微条探测器是在一个n型硅片的表面上,通过氧化和离子注入法,局部扩散法,表面位垒法及光刻等技术工艺制作成的。其表面是均匀平行的附有一层铝膜的重搀杂p+微条。n型硅片的整个底面掺入杂质后,制成n型重搀杂n+层,其外层也附有一层铝,作为电极接触。这样制成了表面均匀条形的pn结型单边读出的探测器。 中间部分的耗尽层是探测器的灵敏区,当在这些条型pn结加上负偏压时,耗尽层在外加电场的作用下,随着电压升高而变厚。当电压足够高,耗尽层几乎扩展到整个n-型硅片,基本达到了全耗尽,死层变得非常薄。因为其内部可移动的载流子密度很低,电阻率很高,漏电流非常小(好的硅微条探测器漏电流小于100pA)。外加电压几乎全部加到耗尽区上,形成很高的电场,。 在无辐射电离时,基本没有信号产生。当有带电粒子穿过探测器的灵敏区时,将产生电子-空穴对,在高电场的作用下,电子向正极(底板)漂移,空穴向靠近径迹的加负偏压的微条漂移,在这很小的区域内(探测器厚度在......阅读全文

硅微条探测器的工作原理

  硅微条探测器是在一个n型硅片的表面上,通过氧化和离子注入法,局部扩散法,表面位垒法及光刻等技术工艺制作成的。其表面是均匀平行的附有一层铝膜的重搀杂p+微条。n型硅片的整个底面掺入杂质后,制成n型重搀杂n+层,其外层也附有一层铝,作为电极接触。这样制成了表面均匀条形的pn结型单边读出的探测器。  

硅微条探测器的结构简介

  从探测器横截面上看,主要分这样几个部分:  探测器表面:有薄铝条, SiO2隔离条,铝条下边是重掺p+条。  中间部分:是厚度大约为300μm 的高阻n 型硅基,作为探测器的灵敏区。  底部:是n 型硅掺入砷(As) 形成重掺杂n+ 层和铝薄膜组成的探测器的背衬电极。  微条(strips)是探

硅微条探测器的形成和发展

  硅微条探测器(silicon micro-strip detector)是指在PN结硅片型半导体探测器外侧敷盖多个金属微条以确定粒子位置的粒子探测器。为了测量粒子或射线的空间分布,近年来发展了以PN结为基体的硅微条位置灵敏探测器。  形成和发展  随着半导体技术的迅速发展,半导体粒子探测器也有了

硅微条探测器的特点有哪些?

  非常好的位置分辨率  这是硅微条探测器最突出的特点。它的位置分辨率是应用的各种探测器中最高的,可做到1.4μm。主要因为固体的密度比气体大100倍左右,带电粒子穿过探测器,产生的电子2空穴对(e-h)的密度非常高,大约为110e-h/μm[2]。  另外由于现代半导体技术工艺,光刻技术及高集成度

硅微条探测器在核医学中的应用

    核医学影像技术与高能物理及核物理探测技术是密切相关的,核医学领域的X光透视,X2CT、MRI、PET、ECT等等,都是在高能物理和核物理实验探测技术的基础上发展起来的。探测技术的各项发展都在不断带动核医学  影像技术的发展。早期的X光影像检测,显示记录只是用X光胶片,随着探测技术的发展,很多

硅微条探测器在高能物理实验中的应用

    因为硅微条探测器及一些相关的半导体探测器的位置分辨率比气体探测器的位置分辨率高一到两个数量级,所以在近十几年来,世界各大高能物理实验室几乎都采用它作为顶点探测器。如美国的FERMILAB的CDF和D0,SLAC实验室的B介子工厂的BaBar实验,西欧高能物理中心CERN的LEP正负电子对撞机

硅微条探测器在空间物理和宇宙线科学实验中的应用

    丁肇中先生领导的AMS组(国际空间站阿尔法磁谱仪实验),计划把A磁谱仪AMS送到国际空间站ISSA,企望在宇宙线中寻找反物质和暗物质。AMS的中间核心部分的多层径迹室都是采用双边读出的硅微条探测器。它是充分利用了双边读出硅微条探测器的高空间分辨率,两维信息读出,CMOS电子学的低功耗的特点。

探测器的工作的原理

探测器是一种可以探测各种物理量的仪器,它在各种领域中都被广泛应用,比如医学、物理、化学等。那么,探测器的工作原理是什么呢?探测器的工作原理基本上是通过传感器测量物理量来实现的。传感器可以是很多不同的东西,比如光电二极管、加速度计、温度传感器等等。不同的传感器是用来衡量不同的物理量的。当传感器检测到某

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

光电探测器工作原理

纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质(即其他的材料,比如 锗 等)然后

微滤的工作原理

原理微滤的过滤原理有三种:筛分、滤饼层过滤、深层过滤。一般认为微滤的分离机理为筛分机理,膜的物理结构起决定作用。此外,吸附和电性能等因素对截留率也有影响。其有效分离范围为0.1-10μm的粒子,操作静压差为0.01-0.2MPa。根据微粒在微滤过程中的截留位置,可分为3种截留机制:筛分、吸附及架桥,

微滤的工作原理

 微滤的过滤原理有三种:筛分、滤饼层过滤、深层过滤。一般认为MF的分离机理为筛分机理,膜的物理结构起决定作用。此外,吸附和电性能等因素对截留率也有影响。其有效分离范围为0.1-10μm的粒子,操作静压差为0.01-0.2MPa。        微滤能截留0.1~1微米之间的颗粒,微滤膜允许大分子有机

光电导探测器的工作原理

效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为λc=hc/Eg=1.24/Eg (μm)

燃气探测器的工作原理简介

  可燃气体探测器采用高品质气体传感器,微处理器结合精密温度传感器能够智能补偿气敏元件的漂移,环境适应范围宽,工作稳定,无需调试,采用吸顶安装方式,安装简单,接线方便,广泛用于家庭、宾馆、公寓等存在可燃气体的场所进行安全监控。可检测 天然气、液化石油气,人工煤气。  探测器工作电压为直流供电。报警后

光电探测器的工作原理简介

  光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。  光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一

可控硅元器件的工作原理

  可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成。

可控硅元器件的工作原理

  可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成。

碳硅分析仪工作原理

  碳硅分析仪通过铸铁冶炼过程中,铁水温度下降曲线分析铁水中碳和硅元素的含量,系统采用ARM处理器和高精度A/D转换器作为温度处理单元,温度曲线采集精度高,稳定性好,抗干扰能力强。系统的图形显示功能强大,温度变化曲线显示直观清晰,温度点的计算采用多种方式,温度平台的捕捉能力强。系统还具有数据库的管理

硅化铂探测器简介

  硅化铂探测器是指利用铂硅肖特基势垒和内光电效应将入射的红外辐射转变成电信号的器件。又称硅化铂肖特基势垒探测器。  简介  硅化铂探测器是指利用铂硅肖特基势垒和内光电效应将入射的红外辐射转变成电信号的器件。又称硅化铂肖特基势垒探测器。  用途  主要用于中、短波红外辐射的探测。  构造  它的构造

红外光电探测器的工作原理

光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器在军事和国民经济的各个领域有广泛用途。 红外光电探测器从本质上来说可以非常有效率的,与其可以防止周围可见光的干扰有极大地关系,它zui大的特点就在于可以进行无接触的探测,而且不损伤被测物体,这是很多消费者都希望的。目前的

四象限探测器的工作原理

四象限光电探测器实际由四个光电探测器构成,每个探测器一个象限,目标光信号经光学系统后在四象限光电探测器上成像。一般将四象限光电探测器置于光学系统焦平面上或稍离开焦平面。当目标成像不在光轴上时,四个象限上探测器输出的光电信号幅度不相同,比较四个光电信号的幅度大小就可以知道目标成像在哪个象限上(也就知道

简介闪烁X射线探测器的工作原理

  闪烁探测器的工作原理是:放射线入射到闪烁体后发出荧光;荧光光子被收集到光电倍增管的光阴极,通过光电效应转换出光电子;光电子通过电子运动并在光电倍增管各级间倍增,最后在阳极输出回路输出信号。闪烁探测器的探测动态范围很宽,对能量在1eV到1GeV范围内的辐射粒子都适用[8],如今己成为最常用的探测器

微粉碎机的工作原理

通过活动盘和固定盘间的高速相对运动,使被粉碎的物料经活动盘和固暄盘间的冲击、剪切、摩擦及物料彼此间的撞击等综合作用获得物料的粉碎。微粉碎机主机由机架、无级调速减速器、自动给料器以及粉碎室组成,粉碎室内装有分级装置、衬圈、粉碎刀等主要工作部件自动给料器将物料推入粉碎室,因负压作用,进入粉碎室内物料受到