氟基电池,未来电池新希望

开发高能量密度电池是电动汽车和智能电网等长续航和大规模储能体系的长期追求目标。锂金属氟基电池能够通过多电子转移和高电位的转换反应,具备实现高能量密度储能的潜质(理论上接近1000Wh/kg 和1800 Wh/L);相比分子转换型锂硫和锂氧电池,能够更好地规避由反应限域困难引发的正极活性物质损失和负极副反应滋生等问题。然而,对于锂-氟转换体系,钝化性的氟化锂(LiF)在反应过程中难以得到持续激活而在电极表面不均匀沉积,造成严重的电压极化和容量衰减。 针对锂-氟多相转换反应面临的动力学迟缓和可逆性不佳的难题,中国科学院上海硅酸盐研究所研究员李驰麟团队提出了一种新型的固液氟转换机制,在醚类电解液中引入阴离子受体添加剂,促进钝化相LiF的解离并在多相反应界面处形成溶剂化的氟离子配位中间体,进而在LiF和Fe基物相间构建便捷的固液氟传输“通道”。这种固液氟传输机制可避开艰难的固固转换方式,提升了锂-氟多相转换反应的动力学,激活了大容......阅读全文

氟基电池,未来电池新希望

  开发高能量密度电池是电动汽车和智能电网等长续航和大规模储能体系的长期追求目标。锂金属氟基电池能够通过多电子转移和高电位的转换反应,具备实现高能量密度储能的潜质(理论上接近1000Wh/kg 和1800 Wh/L);相比分子转换型锂硫和锂氧电池,能够更好地规避由反应限域困难引发的正极活性物质损失和

上海硅酸盐所氟基电池研究获进展

  开发高能量密度电池是电动汽车和智能电网等长续航和大规模储能体系的长期追求目标。锂金属氟基电池能够通过多电子转移和高电位的转换反应,具备实现高能量密度储能的潜质(理论上接近1000Wh/kg 和1800 Wh/L);相比分子转换型锂硫和锂氧电池,能够更好地规避由反应限域困难引发的正极活性物质损失和

氟/硫基正极异质界面催化转换反应研究获系列进展

  传统的嵌入型锂电池正极材料,如橄榄石(LiMPO4)、层状(LiMO2)及尖晶石(LiM2O4)等,虽然具有优良的电化学可逆性,但是其少量电子转移(0.5-1个)的短板极大限制了它们的电荷储存容量和能量密度,已不能满足可移动电子设备、电动汽车及智能电网等应用领域的快速发展。而基于多电子转换反应的

铁基催化剂可降低燃料电池成本

  据物理学家组织网2月18日(北京时间)报道,美国能源部太平洋西北国家实验室的研究人员,首次采用铁基催化剂快速、高效分裂氢气发电,使燃料电池的成本大大降低。该研究成果刊登在最新一期《自然·化学》在线版上。   该实验室分子电催化中心带头人、化学家R.莫里斯·布洛克说,现在燃料电池采用铂作为催化剂

新型铂基催化剂能使燃料电池更耐用

  金属铂(Pt)是非常好的燃料电池催化剂,但铂储量有限,价格昂贵,如何提高其原子利用率和反应活性,决定了燃料电池能否大规模应用。  日前,《科学》杂志刊发了一项由苏州大学教授黄小青、北京大学教授郭少军、美国布鲁克黑文国家实验室苏东合作的成果,他们在铂—铅(PtPb)纳米片外,覆盖了4—6层铂,这种

新型铂基催化剂能使燃料电池更耐用

  金属铂(Pt)是非常好的燃料电池催化剂,但铂储量有限,价格昂贵,如何提高其原子利用率和反应活性,决定了燃料电池能否大规模应用。  日前,《科学》杂志刊发了一项由苏州大学教授黄小青、北京大学教授郭少军、美国布鲁克黑文国家实验室苏东合作的成果,他们在铂—铅(PtPb)纳米片外,覆盖了4—6层铂,这种

广州生物院铜催化异腈的三氟甲基炔基化反应获进展

  中国科学院广州生物医药与健康研究院朱强研究组在铜催化异腈的三氟甲基炔基化反应中取得新进展,相关研究成果于5月15日发表在美国化学会期刊《有机化学快报》上(Org. Lett. 2015, 17, 2322 -2325)。  三氟甲基存在于很多生物活性分子当中,它具有增强分子的化学与代谢稳定性、改

上海有机所在钯催化芳基二氟甲基化反应研究中取得进展

  含氟有机化合物由于氟原子的独特性质,在医药、农药和材料领域中具有十分广泛而重要的应用。近年来,发展与之相关的高效引氟方法和手段,受到了合成化学家们的高度关注。尽管在过去的十年中,大量高效、新颖的氟化方法和反应相继被报道,但大多使用的是商品化的“明星”氟化试剂,通常价格昂贵,而对于大量存在的含氟工

高效单原子Fe基催化剂用于锌空气电池研究获进展

  能源是人类文明进步和发展的物质基础。近年来,随着化石能源的逐渐消耗和日益突出的环境污染问题,人类对绿色、清洁、可再生能源的需求急剧增长。水分解、燃料电池、金属-空气电池等高效、低成本能量存储与转换技术的开发已成为研究的前沿领域。其中,锌-空气电池使用水系电解液具有低成本、安全、环境友好的优势,理

旧电池的崛起——镍基电池

  随着工业改革步伐的加快,汽车行业面临着许多方面的调整,节能减排是最受到关注的,BASF化学公司就此在汽车电池上面做了相关研究,并发现镍氢电池的储能能力可以改善汽车的耗能,因此,旧型镍基电池将会重新崛起,让我们拭目以待。  BASF化学公司说,现在用在混合动力车上的普通电池性能

关于有序多孔高效铂基燃料电池催化剂的研究获进展

氢能燃料电池(PEMFC)具有绿色低碳的优点,是应对未来气候变化、能源需求剧增等挑战的重要手段之一。作为PEMFC阴极反应的关键过程,氧还原反应(ORR)的效率决定电池的性能、寿命与成本,而铂(Pt)基催化剂是燃料电池中促进这一反应的常用催化剂。目前,在商业使用的碳载铂(Pt/C)催化剂中,Pt活性

纳米铁基/石墨烯基类芬顿催化剂的催化机理被揭示

  石墨烯材料具有独特的物理和化学性质,在能源、催化和环境等领域有广阔的应用前景。近年来,铁基磁性纳米粒子因其价格低廉、可磁性分离、催化活性好等优点而被用于设计和制备非均相类Fenton催化剂。经典的芬顿 Fenton (Fe2+/H2O2) 反应可以产生高活性的羟基自由(•OH),然而它在降解有机

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

​什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

什么是钠基电池?

  钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显著改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质

什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

兰州化物所制出新型石墨烯基直接甲醇燃料电池阳极催化剂

  在中科院“百人计划”和国家自然科学基金项目支持下,中科院兰州化学物理研究所清洁能源化学与材料实验室低维材料与化学储能课题组在直接甲醇燃料电池阳极催化剂的合成与性能研究领域取得新进展。   直接甲醇燃料电池具有低温快速启动、结构简单、燃料易储存、环境污染小等优点,可用于不间断通讯设备和便携式电子

上科大发表Science:铈基催化剂和醇催化剂协同催化体系

   上海科技大学物质科学与技术学院左智伟科研团队在光促进甲烷转化这一重要能源化工领域取得突破性进展:他们成功发展了一种廉价、高效的铈基催化剂和醇催化剂的协同催化体系。这一基础研究领域的突破,解决了利用光能在室温下把甲烷一步转化为液态产品的科学难题,为甲烷转化成高附加值的化工产品(例如火箭推进剂燃料

MOFs基催化剂的制备和VOCs催化氧化方面取得进展

  当今工业的高速发展给人们工作生活带来便利的同时也造成了严重的大气污染问题,挥发性有机物VOCs是造成大气污染的主要因素之一。催化氧化法是在催化剂的作用下将VOCs在较低温度下分解为无毒或低毒的物质,由于其能耗低、二次污染小、可以对不同种类及浓度的VOCs进行有效治理,且技术成熟,被广泛应用于工业

大化所揭示燃料电池铂基氧还原反应电催化剂的协同机制

  近日,我所醇类燃料电池及复合电能源研究中心(DNL0305组)孙公权研究员和王素力研究员团队在高稳定性铂基氧还原反应电催化剂研究方面取得新进展。该团队报道了一种具有超高稳定性的核壳结构铂铑合金(PtRh/Pt)氧还原反应电催化剂,结合密度泛函理论(DFT)计算与AC-STEM、电化学等表征手段,

电池催化剂的作用原理

燃料电池的反应物主要是气体或者某些液体(如甲醇)的蒸气.铂丝,部分金属的氧化物具有吸附气体的功效(形成较复杂的络合物),使更多的气体分子聚集到电极上,增大了电极上气体的分压,增加了分子间碰撞的几率,达到催化反应的效果.

钠基电池和锂离子电池的应用差异

1、电池内部电荷载体的不同,锂离子电池是通过锂离子在正负极之间移动、转换实现充放电的,而钠离子电池则是由钠离子在正负极之间的嵌入、脱出实现电荷转移的,其实二者的工作原理是相同的。2、两者离子半径不同,这半径差别导致钠离子电池的性能远远不及锂离子电池;锂离子的负极可以使石墨,但是钠离子几乎不能再石墨中

钠基电池和锂离子电池对比分析

  新能源汽车的技术核心在锂离子电池,不过现在有一种钠基电池,可以用更低的价格存储和最新锂离子电池相同的能量。材料价格占据电池价格的四分之一,锂的成本高达15000美元/吨,而钠只要150美元/吨。锂离子电池发明至今已有25年,且一直占据着重要市场,但锂已变得越来越稀缺,且开采成本也越来越高。为此,

钠基电池和锂离子电池的性能差异

1、电池内部电荷载体的不同,锂离子电池是通过锂离子在正负极之间移动、转换实现充放电的,而钠离子电池则是由钠离子在正负极之间的嵌入、脱出实现电荷转移的,其实二者的工作原理是相同的。2、两者离子半径不同,这半径差别导致钠离子电池的性能远远不及锂离子电池;锂离子的负极可以使石墨,但是钠离子几乎不能再石墨中

钠基电池和锂离子电池的技术对比

1、电池内部电荷载体的不同,锂离子电池是通过锂离子在正负极之间移动、转换实现充放电的,而钠离子电池则是由钠离子在正负极之间的嵌入、脱出实现电荷转移的,其实二者的工作原理是相同的。2、两者离子半径不同,这半径差别导致钠离子电池的性能远远不及锂离子电池;锂离子的负极可以使石墨,但是钠离子几乎不能再石墨中

“碳基能源转化利用的催化科学”项目启动

  近日,国家自然科学基金委员会重大研究计划“碳基能源转化利用的催化科学”项目启动会在中科院大连化物所举行。重大研究计划专家组和管理组成员、获得2015年重点支持项目(5个)和培育项目(31个)资助的项目负责人以及基金委化学部领导参加了启动会。  这一研究计划的设立对更好地推动碳基能源的产业革命,造

中国科大在碳基催化剂电催化析氢研究中取得进展

  近年来电解水制氢受到广泛关注,寻找能替代贵金属的廉价高效的电催化剂成为当下研究热点。石墨烯由于具有良好的导电性、优异的化学稳定性以及易于化学修饰等优点,引起了科研人员的广泛关注,人们致力于将其发展成为高活性的电解水制氢催化剂。已有研究结果表明通过氮等杂原子掺杂可以调控杂原子近邻碳原子的电子结构,