人工智能成功预测蛋白质的相互作用

美国科学家主导的国际科研团队在最新一期《科学》杂志撰文指出,他们利用人工智能和进化分析,绘制出了真核生物的蛋白质之间相互作用的3D模型,首次确定了100多个可能的蛋白质复合物,并为700多个蛋白质复合物提供了结构模型,深入研究蛋白质相互作用有望催生新的药物。 研究负责人之一、美国西南大学人类发育与发展中心助理教授丛前(音译)称,研究结果代表了结构生物学新时代的重大进步。 丛前解释说,蛋白质通常成对或成组工作,形成复合物,以完成生物体存活所需的任务。虽然科学家已经对其中一些相互作用开展了深入研究,但许多仍是未解之谜。了解蛋白质之间所有的相互作用将揭示生物学的许多基本方面,并为新药研发提供参考。 但半个世纪以来,鉴于许多蛋白质结构的不确定性,科学家们很难了解这些相互作用。2020年和2021年,深度思维公司和华盛顿大学戴维·贝克实验室独立发布了两种人工智能技术“阿尔法折叠”和RoseTTAFold,它们使用不同的策略预测蛋......阅读全文

真核生物特征

原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。与光合磷酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上 。原核生物中的蓝细菌和光合细菌,虽然

真核生物起始因子

中文名称真核生物起始因子英文名称eukaryotic initiation factor定  义参与真核生物的蛋白质合成起始作用的蛋白质因子。应用学科细胞生物学(一级学科),细胞遗传(二级学科)

什么是真核生物?

  真核生物中的染色体由染色质丝组成。染色质丝由核小体组成(组蛋白八聚体,DNA链的一部分附着并包裹在其周围)。染色质丝被蛋白质包装成称为染色质的浓缩结构。染色质含有绝大多数的DNA和少量的母系遗传获得的如线粒体DNA。染色质存在于大多数细胞中,除少数例外,例如红细胞。染色质允许非常长的DNA分子进

原始真核生物的定义

中文名称原始真核生物英文名称urkaryote;urcaryote定  义韦斯(C.R.Woese)和福克斯(G.E.Fox)于 1977年提出,指尚未获得线粒体、叶绿体等细胞器的原始真核细胞。应用学科遗传学(一级学科),进化遗传学(二级学科)

真核生物的作用简介

  真核生物(具有细胞核的细胞,例如植物、真菌和动物细胞)具有包含在细胞核中的多个大的线性染色体。每个染色体都有一个着丝粒,一个或两个从着丝点突出的臂。此外,大多数真核生物还有小的环状线粒体染色体,一些真核生物也有额外的小环状或线性细胞质染色体。 在真核生物的核染色体中,未浓缩的DNA以半有序结构存

真核生物的转录终止

真核生物的转录终止,是和这类转录后修饰密切相关的。真核mRNA3’端在转录后发生修饰,加上多聚腺苷酸(polyA)的尾巴结构。大多数真核生物基因末端有一段AATAAA共同序列,再下游还有一段富含GT序列,这些序列称为转录终止的修饰点。真核RNA转录终止点在越过修饰点延伸很长序列之后,在特异的内切核酸

原核生物和真核生物冈崎片段的差异

冈崎片段存在于原核生物和真核生物中。真核生物的DNA分子不同于原核生物的环状分子,因为它们更大,通常有多个复制起点。这意味着每个真核细胞的染色体都是由许多具有多个复制起点的DNA复制单元组成的。相比之下,原核DNA只有一个复制起点。原核生物和真核生物冈崎片段的长度也不同。原核生物的冈崎片段比真核生物

原核生物和真核生物冈崎片段的差异

冈崎片段存在于原核生物和真核生物中。真核生物的DNA分子不同于原核生物的环状分子,因为它们更大,通常有多个复制起点。这意味着每个真核细胞的染色体都是由许多具有多个复制起点的DNA复制单元组成的。相比之下,原核DNA只有一个复制起点。原核生物和真核生物冈崎片段的长度也不同。原核生物的冈崎片段比真核生物

原核生物和真核生物冈崎片段的差异

  冈崎片段存在于原核生物和真核生物中。真核生物的DNA分子不同于原核生物的环状分子,因为它们更大,通常有多个复制起点。这意味着每个真核细胞的染色体都是由许多具有多个复制起点的DNA复制单元组成的。相比之下,原核DNA只有一个复制起点。  原核生物和真核生物冈崎片段的长度也不同。原核生物的冈崎片段比

原核生物和真核生物mRNA的特点对比

原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时(RNA噬菌体中的

原核生物和真核生物DNA的复制特点

起点:通常细菌等原核生物只要一个复制起点,真核生物有很多个复制起点。在不同的发育时期,真核的复制起点数目和复制子大小会改变。速率:原核生物复制速率比真核生物快。真核生物多复制子,因而整个染色体的复制速度并不比原核的慢。原核生物可以连续发动复制。

原核和真核生物mRNA特点差异

原核和真核生物mRNA有不同的特点:①原核生物mRNA常以多顺反子(见)的形式存在,即一条mRNA链编码几种功能相关联的蛋白质。真核生物mRNA一般以单顺反子的形式存在,即一种mRNA只编码一种蛋白质。②原核生物mRNA的转录与翻译一般是偶联的,即转录尚未完毕,蛋白质的转译合成就已开始。真核生物转录

真核生物基因组4

(2) 苯丙酮尿症 苯丙酮尿症(PKU)的病因是患者肝细胞缺乏苯丙氨酸羟化酶,使体内的苯丙氨酸不能正常代谢为酪氨酸,导致血清中苯丙酮酸浓度升高。现已知苯丙氨酸羟化酶基因定位于12q24.1,此基因全长约90kb,含13个外显子,在中国人中已发现10余种点突变,这是造成酶活性缺乏的原因。 2.

真核生物基因组3

第二节 基因组结构与疾病一、人类染色体的结构与疾病(一) 人体染色体数目、结构和形态人类体细胞中有46条染色体,其中44条(22对)为常染色体,另两条为性染色体(女性为XX,男性为XY)。生殖细胞中卵细胞和精子各有23条染色体,卵细胞为22+X,精子为22+X或22+Y。为便于鉴别人类的每一条染色体

真核微生物的分类

真核策生物主要包括各类真菌,还有粘菌等。真菌划分各能分类单位的基本原则是以形态特征为主,生理生化、细胞化学和生态等特征为辅。丝状真菌主要根据其孢子产生的方法和孢子本身的特征,以及培养特征来划分各级的分类单位。一些病原真菌的鉴定,寄生和症状也可作为参考依据。真菌可分以下四纲:Ⅰ藻状菌纲 菌丝体无分隔,

真核生物的转录终止特点

真核生物的转录终止,是和这类转录后修饰密切相关的。真核mRNA3’端在转录后发生修饰,加上多聚腺苷酸(polyA)的尾巴结构。大多数真核生物基因末端有一段AATAAA共同序列,再下游还有一段富含GT序列,这些序列称为转录终止的修饰点。真核RNA转录终止点在越过修饰点延伸很长序列之后,在特异的内切核酸

真核生物翻译的调控(2)

5′端非翻译区的二极结构影响到调控蛋白与帽结构的接近,阻碍40S前起始复合体的装配和在mRNA上的扫描,起负调控的作用。但若二极结构位于 AUG的近下游,(最佳距离为14 nt),将会使移动的40亚基停靠在AUG位点,增强起始反应。真核的系列翻译起始因子可使二极结构解链,使翻译复合体顺利通过

关于真核生物mRNA的介绍

  相比原核细胞mRNA,真核细胞内参与翻译的mRNA具有以下不同:  (1)总是单ORF的(即每条链只能编码一个蛋白),即单顺反子。  (2)没有核糖体结合位点(仅有部分含有较为保守的Kozak序列:G/A——AUGG,其功能尚不完全明确)。  (3)核糖体的招募需要5'端的特殊结构(5&

真核生物翻译的调控(1)

原核生物基因表达的调控主要在转录水平上进行,而真核生物由于RNA较为稳定,所以除了存在转录水平的调控以外,在翻译水平上也进行各种形式的调控。在蛋白质生物合成的起始反应中主要涉及到细胞中的四种装置,这就是:1.核糖体,它是蛋白质生物合成的场所;2.蛋白质合成的模板mRNA它是传递基因信息的媒介;3.可

真核生物基因组1

真核生物的基因组比较庞大,并且不同生物种间差异很大,例如人的单倍体基因组由3.16×109 bp组成。在人细胞的整个基因组中实际上只有很少一部份(约占2%~3%)的DNA序列用以编码蛋白质。 第一节 真核生物基因组特点 真核生物体细胞内的基因组分细胞核基因组与细胞质基因组,细胞核基因

真核生物基因组2

(二) 中度重复序列中度重复序列是指在真核基因组中重复数十至数万次(

原核生物和真核生物mRNA有不同的特点

原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。 原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时(RNA噬菌体中

原核生物和真核生物mRNA有不同的特点

原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时(RNA噬菌体中的

真核生物与原核生物基因表达调控的差异

原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征是能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过

原核生物和真核生物mRNA有不同的特点

  ①原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。  ②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。  ③原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时

原核和真核生物mRNA不同的特点

  ①原核生物mRNA常以多顺反子(见)的形式存在,即一条mRNA链编码几种功能相关联的蛋白质。真核生物mRNA一般以单顺反子的形式存在,即一种mRNA只编码一种蛋白质。  ②原核生物mRNA的转录与翻译一般是偶联的,即转录尚未完毕,蛋白质的转译合成就已开始真核生物转录的mRNA前体则需经后加工,加

原核生物和真核生物Argonaute酶的主要区别

  Argonaute蛋白(Ago)是一类庞大的蛋白质家族,是组成RISC复合物的主要成员。在进化过程中演变出了各种亚科蛋白。这些亚科蛋白可以识别各种不同类型的小RNA分子,从而在各种小RNA沉默途径中发挥作用。  酶有明确的活性位点,与底物分子复杂地结合。这通常伴随催化反应发生前的酶构象变化。对A

原核和真核生物mRNA有不同的特点

①原核生物mRNA常以多顺反子(见)的形式存在,即一条mRNA链编码几种功能相关联的蛋白质。真核生物mRNA一般以单顺反子的形式存在,即一种mRNA只编码一种蛋白质。②原核生物mRNA的转录与翻译一般是偶联的,即转录尚未完毕,蛋白质的转译合成就已开始。真核生物转录的mRNA前体则需经后加工,加工为成

原核和真核生物mRNA有不同点

原核和真核生物mRNA有不同的特点:①原核生物mRNA常以多顺反子(见)的形式存在,即一条mRNA链编码几种功能相关联的蛋白质。真核生物mRNA一般以单顺反子的形式存在,即一种mRNA只编码一种蛋白质。②原核生物mRNA的转录与翻译一般是偶联的,即转录尚未完毕,蛋白质的转译合成就已开始。真核生物转录

科学家发现未知真核生物

  真核生物通常分为植物、动物、真菌和被称为原生生物的微小多细胞生物4个界,涵盖了地球上找到的几乎所有真核生物。但加拿大新斯科舍省达尔豪斯大学的研究人员近日在英国《自然》网站上发文称,他们发现了生命之树上的新分支——一种以前未知的新型真核生物,或许应该使其所在的“门”升级为新的“界”。   该论