药剂学的历史起源
药剂学是一门有着悠久历史的学科,中国很早以前对药品就有“丸散膏丹,神仙难辨”的谚语,其中的“丸散膏丹”指的就是不同的药物制剂剂型。在中国早期的医学和药学著作如《针灸甲乙经》、《黄帝内经》、《金匮要略》等中都有关于药物剂型和疗效关系的记载。中国早期药物的主要剂型有:汤剂、酒剂、饼剂、曲剂、洗浴剂、丸剂、膏剂等不同类型。古代近东地区的古埃及和古巴比伦遗留下来的,著录于公元前十六世纪的《伊伯氏纸草本》是古代近东地区药剂学的重要著作,收录有散剂、膏剂、硬膏剂、丸剂、印模片剂、软膏剂等多种剂型,此外还收录了制剂处方,生产工艺和用途等重要信息。欧洲药剂学起始于公元一世纪前后,罗马籍希腊人,被欧洲各国誉为药剂学鼻祖的格林在他的专著中著录了散剂、丸剂、浸膏剂、溶液剂、酊剂、酒剂,人们称之为格林制剂,其中很多剂型至今仍在一些国家应用。随着十九世纪以来西方机械文明的发展,大量制药机械产生,药物制剂的生产工艺发生巨大的变化,药剂学作为一门专门学科从原......阅读全文
药剂学基本理论
药物代谢动力学,生物利用度理论,药物制剂稳定性理论,给药系统理论等。
药剂学的研究对象有哪些?
新剂型开发《中国药典》2005年版一部(中药)附录收载了26种剂型,二部(化学药)附录收载了21种剂型,三部(生物制品)附录收载了13种剂型。 分为固体剂型(如散剂、丸剂、颗粒剂、胶囊剂、片剂等),半固体剂型(如软膏剂、糊剂等),液体剂型(如溶液剂、芳香水剂、注射剂等)和气体剂型(如气雾剂、吸入剂等
药剂学片剂的优势和不足
片剂的优点:①剂量准确,含量均匀,以片数作为剂量单位;②化学稳定性较好,因为体积较小、致密,受外界空气、光线、水分等因素的影响较少,必要时通过包衣加以保护;③携带、运输、服用均较方便;④生产的机械化、自动化程度较高,产量大、成本及售价较低;⑤可以制成不同类型的各种片剂,如分散(速效)片、控释(长效)
药剂学有哪些分支学科
基础药剂学:研究药剂学的基本理论和基础方法。1、物理药学: 以物理化学的基本理论研究药物理化性质和药剂学中有关剂型的性质。2、生物药剂学: 研究药物在体内吸收、分布、代谢、排泄过程和药物的疗效以及药物剂型关系。3、药物动力学:应用数学工具研究药物在体内吸收、分布、代谢、排泄经时过程,建立和分析药物在
药剂学中的包合物是什么?
包合物是一类有机晶体。其结构中含有两种结构单位,即包合物是由两种化合物组成的:一种是能将其他化合物囚禁在它的结构骨架空穴里的化合物,称为包合剂或主体分子;另一种是被囚禁在包合剂结构的空穴或孔道中的化合物,称为被包合剂或客体分子。常见的能形成空穴或孔道的化合物有冠醚,环糊精,杯芳烃,杯吡咯,杯咔唑,瓜
生物药剂学的研究目标和方向
生物药剂(Biopharmacy或Biopharmaceutics)是60年代发展起来的一门新分支,它是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素和人体生物因素与药效的关系的一门科学。它的研究目的主要是正确评价药剂质量,设计合理的剂型及制剂工工艺以及为临床合理用药提供科学
生物药剂学的研究的主要内容
(1)剂型因素的研究。研究药物剂型因素和药效之间的关系,这里所指的剂型不仅是指片剂、注射剂、软膏剂等剂型概念,还包括跟剂型有关的各种因素,如药物的理化性质(粒径、晶型、溶解度、溶解速度、化学稳定性等)、制剂处方(原料、辅料、附加剂的性质及用量)、制备工艺(操作条件)以及处方中药物配伍及体内相互作用等
国外著名药剂学期刊推荐
国外著名药剂学期刊推荐 ------献给奋斗于药剂学的朋友,共同分享 The AAPS Journal AAPS pharmscitech Advanced Drug Delivery Reviews Chemical & Pharmaceutical Bulle
国外著名药剂学期刊推荐
国外著名药剂学期刊推荐 ------献给奋斗于药剂学的朋友,共同分享 The AAPS Journal AAPS pharmscitech Advanced Drug Delivery Reviews Chemical & Pharmaceutical Bulle
质谱仪的起源
分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不
PCR-的起源
聚合酶链式反应(英文:Polymerase chain reaction,缩写:PCR,又称多聚酶链式反应),是一项利用 DNA 双链复制的原理,在生物体外复制特定 DNA 片段的核酸合成技术。这项技术可在短时间内大量扩增目的基因,而不必依赖大肠杆菌或酵母菌等生物体。 诺贝尔化学奖得主凯利·穆
核膜的起源
根据对核膜比较基因组学、进化、起源的研究,有科学家提出了原始真核生物“前核生物”(prekaryote)假说,认为其与古菌内共生最终触发了核膜产生。 对于核膜的研究则给出了几个核膜来源的观点,包括原核生物祖先的质膜内陷,或在原生宿主中建立原线粒体后形成真正的新膜系统。 至于核膜的适应性功能,
药剂学片剂常用填充剂有哪些?
1.淀粉:便宜,可压性差。淀粉/糖粉/糊精混合使用。另作崩解剂,淀粉浆作黏合剂。2.糖粉:粘和力强,吸湿性强,片剂硬度大,口含片和可溶性片剂中多用(矫味作用)。3.糊精:淀粉部分水解得到的产物。黏附力强,硬度大,吸附性强。4.乳糖:优良的片剂填充剂。用喷雾干燥法制得的乳糖粒子接近球型,流动性和可压性
药剂学的分支学科及剂型重要性
1、药剂学的分支学科(1)物理药学:是应用物理化学的基本原理和手段研究药剂学中各种剂型性质的科学。(2)生物药剂学:研究药物、剂型和生理因素与药效间的科学。(3)药物动力学:研究药物吸收、分布、代谢与排泄的经时过程。2、药物剂型重要性(1)剂型可改变药物的作用性质;(2)剂型能调节药物的作用速度;(
癌症耐药的起源
在过去几十年癌症治疗中,对肿瘤高特异性的靶向药物对癌症治疗起到了非常重要的作用。目前, EGFR突变肺癌是一种常见的家族遗传癌症(白血病和恶性黑色素瘤也是家族遗传癌症,这些癌症都基于在患者体内一些抑癌基因失活或突变而导致肿瘤的发生、发展)。所以,开发出有针对性的靶向药物可以有效地控制这些遗传癌症
分子进化的起源
在漫长的进化过程中生物的 DNA经历了各种各样的变化。包括基因突变、基因重组、染色体易位等。碱基置换突变常导致蛋白质中一个氨基酸的改变。例如正常血红蛋白第 6位的谷氨酸改变为缬氨酸便成为镰形细胞贫血症的血红蛋白 HbS,为赖氨酸替代则成为HbC,前者的碱基是从GAA(谷氨酸)→GUA(缬氨酸),后者
肠道的进化起源
消化系统、皮肤、肌肉组织是如何进化的呢?这个问题困扰了科学家一个多世纪。维也纳大学的研究人员对海葵(一种非常古老的动物)胚胎发育的研究结果质疑了150年前提出的形成所有器官和组织的胚层具有同源性的假说。 该假说认为,身体中所有的器官和组织都来源于三个胚层之一,这些胚层在胚胎形成早期出现。这
T细胞的起源
所有的T细胞都来源于造血干细胞(HSC),造血干细胞之后会分化为多能祖细胞(MPP),多能祖细胞又会分化为共同淋巴祖细胞(CLP),CLP接下来只有三种分化路径,即T细胞、B细胞和NK细胞。 那些分化为T细胞的CLP将会随着血流到达胸腺,并成为早期胸腺祖细胞(ETP),现在这些细胞既不表达CD也不表
单倍体基因的起源
人类基因组中的单倍型源于人类有性生殖的分子机制和我们作为一个物种的历史。除性细胞外,染色体在人类细胞中成对出现。其中一条染色体来自父方,另一条来自母方。但染色体在一代代的传递过程中并不是一成不变的。在精子和卵细胞形成的过程中,染色体对发生重组,即一对染色体中聚集到一起并交换片段。由此产生的杂合染色体
病毒的起源之谜
这特么到底是啥?研究不同生物之间关联的科学家每天都在问这个问题。其答案并不简单,但很重要。生物联系不仅用来制作生命的目录,还有助于理解生命演化为不同形式的进化历程。 病毒是一个极佳的例子。病毒没有细胞结构,因此无法被归类为三种生命域中的任何一种——细菌,古生菌(另一种形式的微生物)及真核生物(
有性生殖的起源
有性生殖是如何起源的(即为什么有性)?这样一个看似简单的问题不仅令达尔文困惑不已,150年过去了, 人们都还未找到一个普遍认可的理论, 这也被称为是进化生物学问题之皇后“ queen of problems in evolutionary biology” (Bell, 1982)。法国著名的遗传学
包合技术在药剂学中研究和应用
包合技术在药剂学中研究和应用很广泛,有以下几点:1.提高药物的稳定性;2.增大溶解度;3.掩盖不良嗅味,降低药物刺激性与毒副作用;4.调节药物的释放度,提高药物生物利用度。
前体脂质体在药剂学中应用
生物技术的不断发展和制备工艺逐步完善,加之前体脂质体具备脂质体的一系列特点,使前体脂质体包封药物越来越受到重视并得到广泛应用。 1、抗肿瘤药物载体 前体脂质体作为抗癌药物载体具有能增加与癌细胞的亲和力,克服耐药性,增加药物被癌细胞的摄取量,降低用药剂量,提高疗效,降低毒副作用的特点。携载化疗
药剂学检查片剂的脆碎方法是什么?
片重为0.65g或以下者取若干片,使其总重约为6.5g;片重大于0.65g者取10片。用吹风机吹去脱落的粉末,精密称重,置圆筒中,转动100次。取出,同法除去粉末,精密称重,减失重量不得过1%,且不得检出断裂、龟裂及粉碎的片。本试验一般仅作1次。如减失重量超过1%时,?可复检2次,3次的平均减失重量
色谱法的起源
色谱法起源于20世纪初,1906年俄国植物学家米哈伊尔·茨维特用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。由于这一实验将混合的植物色素分离为不同的色带,因此茨维特将这种方法命名为Хроматография
核糖体的起源
核糖体可能最初起源于RNA,看起来像一个自我复制的复合体,只是有在氨基酸出现后才进化具有合成蛋白质的能力。将核糖体从古老的自我复制机器演变为其当前形式的翻译机器的驱动力可能是将蛋白质结合到核糖体的自我复制机制中的选择压力,这种转变增加了其自我复制的能力。
色谱法的起源
色谱法起源于20世纪初,1906年俄国植物学家米哈伊尔·茨维特用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。由于这一实验将混合的植物色素分离为不同的色带,因此茨维特将这种方法命名为Хроматография
基准物质概念的起源
自1906年美国标准局(NBS)正式制备和颁布了第一批铸铁、转炉钢等五种标准物质(当时称标准铁样)以来,标准物质的发展已经历了近100年的历史。标准物质作为现代计量科学的一个重要分支和标准化技术的一个组成部分,经历了从简单到复杂、由不成熟到成熟、不断创新,不断开拓新的技术领域的漫长历程。标准物质已在
核糖体的起源
核糖体可能最初起源于RNA,看起来像一个自我复制的复合体,只是有在氨基酸出现后才进化具有合成蛋白质的能力。将核糖体从古老的自我复制机器演变为其当前形式的翻译机器的驱动力可能是将蛋白质结合到核糖体的自我复制机制中的选择压力,这种转变增加了其自我复制的能力[26]。
RNAi的发现和起源
首次发现dsRNA能够导致基因沉默的线索来源于线虫Caenorhabditis elegans的研究。>1995年,康乃尔大学的Su Guo博士和>Kemphues在试图阻断秀丽新小杆线虫(C. elegans)中的par-1基因时,发现了一个意想不到的现象。她们本是利用反义RNA技术特异性地阻断