傅里叶变换分光仪测量太阳光谱的谱线轮廓

傅里叶变换分光仪还用于可见光谱区,测量太阳光谱的谱线轮廓。应用于可见光波段的,是一种精度极高的光学仪器。这种仪器要求采用多种措施保证平面镜M2在长扫描距离(1~2米)内运动的平稳性,和取样间距的高精度(几埃),并需配备大容量、高速度电子计算机,才能完成傅里叶变换的数学运算。......阅读全文

傅里叶变换红外光谱仪概述

红外光谱法 (infrared spectroscopy,IR) 是鉴别化合物和进行物质分子结构研究的重要手段之一,同时也是物质组分定量分析的方法之一,是分子光谱法的一个重要分支。它是一种借助红外光被物质吸收情况,获得被测物质分子内部原子间相对振动和分子转动等信息,并根据所获得信息进行物质分子结构研

傅里叶变换红外光谱仪原理

一、产生红外吸收的条件根据量子力学,分子内部原子间的相对振动和分子本身转动所需的能量是量子化的,也就是说,从一个能态跃迁到另一个能态不是连续的,当照射于分子的光能 (E,E=hυ,h为普朗克常数,υ为光的频率) 刚好等于基态第一振动或转动能量的差值 (△E=E1- E0) 时,则分子便可吸收光能量,

火花直读光谱仪的概述

  火花直读光谱仪是分析黑色金属及有色金属成份的快速定量分析仪器。本仪器广泛应用于冶金、机械及其他工业部门,进行冶炼炉前的在线分析以及中心实验室的产品检验,是控制产品质量的有效手段之一。  光谱仪( Spectroscope)又称分光仪。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构

介绍一下傅里叶变换红外光谱仪分辨率的基本概念

分辨率是傅里叶变换红外光谱仪的主要性能指标之一,它指的是光谱仪对两个靠得很近的谱线的辨别能力。具体来说,傅里叶变换红外光谱仪的分辨率由仪器干涉仪动镜的移动距离决定。根据干涉仪的工作原理,通过光程差的数学计算,分辨率近似等于最大光程差的倒数,也就是动镜移动有效距离2倍的倒数。例如,一台仪器的动镜移动有

关于线光谱的明线光谱的介绍

  又叫发射光谱,发射光谱是原子自身发光产生的光谱,所以是明线。  产生原因:原子的最外层电子由高能级向低能级跃迁,能量以电磁辐射的形式发射出去,这样就得到发射光谱。基态原子通过电、热或光致激发光源作用而获得能量,外层电子从基态跃迁到较高能态变为激发态,激发态不稳定,经过10-8s,外层电子就从高能

关于线光谱的暗线光谱的介绍

  又叫吸收光谱,吸收光谱是原子吸收白光里相应波长的光后产生的光谱。白光本来是连续的一部分,被吸收了之后就产生了暗线。  产生原因:处于基态原子核外层电子,如果外界所提供的特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(△Ei)时,核外层电子将吸收特征能量的光辐射由基态跃

线光谱的分布规律

原子光谱按波长的分布规律反映了原子的内部结构,每种原子都有自已特殊的光谱系列。通过对原子光谱的研究可了解原子内部的结构,或对样品所含成分进行定性和定量分析。不同原子排列规律不同,辐射强度也不同。一般离原子核较远的电子跃迁,辐射光谱在红外部分,离原子核较近的电子跃迁,辐射光谱在紫外部分,介于二者之间的

介绍一下傅里叶变换红外光谱仪分辨率的测量方法

测量傅里叶变换红外光谱仪分辨率的一种常见方法是使用窄带光源或具有尖锐吸收峰的标准样品。以下是一般的测量步骤:选择合适的标准样品:通常会选用具有尖锐、孤立吸收峰的标准物质,例如聚苯乙烯等。这些标准样品的吸收峰位置和形状是已知的。准备仪器:确保傅里叶变换红外光谱仪处于正常工作状态,光路调整良好,仪器稳定

中国首颗“羲和号”如何给太阳大气做“CT”?

8月30日,中国首颗太阳探测科学技术试验卫星“羲和号”探日成果在北京正式发布,该卫星由中国航天科技集团八院抓总研制。自2021年10月14日成功发射以来,“羲和号”按照既定任务计划开展科学观测,累计下传原始观测数据50Tbit,生成科学数据约300Tbit,这些数据已向全球开放共享,得到了美、法、德

马尔轮廓测量仪测针选型应用

德国马尔轮廓测量仪测针广泛应用于机械加工、汽车、轴承、机床、摸具、精密五金、光学加工等行业。该仪器可测量各种精密机械零件的粗糙度和轮廓形状参数。用拟合法来评定圆弧和直线等。从而可测量圆弧半径、直线度、凸度、沟心距、倾斜度、垂直距离、水平距离、台阶等形状参数。该仪器还可对各种零件表面的粗糙度进行测试;

轮廓仪和三坐标测量机区别

1、测量对象不同三坐标测量机是测量和获得尺寸数据的最有效的方法之一。轮廓仪可测量各种精密机械零件的素线形状,直线度、角度、凸度、对数曲线、槽深、槽宽等参数。2、应用范围不同三坐标测量机主要用于机械、汽车、航空、军工、家具、工具原型、机器等中小型配件、模具等行业中的箱体、机架、齿轮、凸轮、蜗轮、蜗杆、

轮廓仪和三坐标测量机区别

1、测量对象不同三坐标测量机是测量和获得尺寸数据的最有效的方法之一。轮廓仪可测量各种精密机械零件的素线形状,直线度、角度、凸度、对数曲线、槽深、槽宽等参数。2、应用范围不同三坐标测量机主要用于机械、汽车、航空、军工、家具、工具原型、机器等中小型配件、模具等行业中的箱体、机架、齿轮、凸轮、蜗轮、蜗杆、

氘灯的特征谱线

氘灯是最常用来检测紫外可见分光光度计的波长准确度的标准灯。大多数进口紫外可见分光光度计, 都用仪器上的氘灯来检测波长准确度。国产紫外可见分光光度计中, 中档以上、带有自动扫描的仪器, 也都采用仪器上的氘灯来检测波长准确度(如TU-1900、T U-1901、UV-2100、TU-1810 等

氘灯的特征谱线

  氘灯是最常用来检测紫外可见分光光度计的波长准确度的标准灯。大多数进口紫外可见分光光度计,都用仪器上的氘灯来检测波长准确度。国产紫外可见分光光度计中,中档以上、带有自动扫描的仪器,也都采用仪器上的氘灯来检测波长准确度(如TU-1900、TU-1901、UV-2100、TU-1810、SP-2500

氘灯的特征谱线

摘要:特别要注意两点:第一,光谱带宽大于2nm以上的仪器也不能用仪器上的氘灯检测波长准确度,因为656.1nm这根特征谱线很尖锐,容易产生误差;第二,仪器制造厂商,不能只用氘灯检测波长准确度,因为可见区的波长准确度好,不能完全代替紫外区的波长准确度也好。 氘灯是最常用来检测紫外可见分光光度计的波

谱线的基本概念

谱线通常是量子系统(通常是原子,但有时会是分子或原子核)和单一光子交互作用产生的。当光子的能量确实与系统内能阶上的一个变化符合时(在原子的情况,通常是电子改变轨道),光子被吸收。然后,它将再自发地发射,可能是与原来相同的频率或是阶段式的,但光子发射的总能量将会与当初吸收的能量相同,而新光子的方向不会

锐线光谱和特征光谱的区别

  锐线光谱,一般指单一元素发射出来的,不连续的,峰形尖锐的一条或几条光谱线所形成的光谱。现在主要是在原子发射光谱和原子吸收光谱使用。 与连续光谱相对。能发出锐线光谱的光源称作锐线光源,如空心阴极灯。而碘钨灯、氙弧灯发射的是连续光谱,称作连续光源。  特征光谱  一定元素发出的光(或通过某种元素的光

原子吸收光谱谱线强度与哪些因素有关

  其主要因素影响分别如下:   ① 自然宽度:原子吸收线的自然宽度与激发态的平均寿命有关,激发态的原子寿命越长,则吸收线的自然宽度越窄,其平均寿命约为10-8s数量级,一般来说,其自然宽度为10-5nm数量级;   ② 多普勒变宽:是由于原子无规则的热运动而产生的,故又称为热变宽.多普勒变宽随

关于傅里叶变换红外光谱仪的简介

  傅里叶变换红外光谱仪主要由迈克尔逊干涉仪和计算机组成。迈克尔逊干涉仪的主要功能是使光源发 出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率 和强度信息。用计算机将干涉图函数进行傅里叶变换,就可计算出原来光源的强度按频率的分布。 [1]它克服了色散型光

傅里叶变换红外光谱仪的光学原理

傅立叶变换红外光谱仪的典型光路系统,来自红外光源的辐射,经过凹面反射镜使成平行光后进入迈克尔逊干涉仪,离开干涉仪的脉动光束投射到一摆动的反射镜B,使光束交替通过样品池或参比池,再经摆动反射镜C(与B同步),使光束聚焦到检测器上。 傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经

傅里叶变换红外光谱仪的工作原理

傅里叶变换红外光谱仪的工作原理如下:是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。红外分光光度计和傅里叶红外光谱仪之间的区别如下:一、原理不同1、红外分光光度计:由光源发出的光,被分为能量均等对称的两束,一束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被

傅里叶变换红外光谱仪的工作原理

傅里叶变换红外光谱仪的工作原理如下:是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。红外分光光度计和傅里叶红外光谱仪之间的区别如下:一、原理不同1、红外分光光度计:由光源发出的光,被分为能量均等对称的两束,一束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被

傅里叶变换红外光谱仪的基本结构

红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有

傅里叶变换红外光谱仪的产品特点

傅里叶变换红外光谱仪的产品特点傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,

傅里叶变换红外光谱仪的操作步骤

  1. 开机前准备  开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在15~25℃、湿度 ≤ 60%才能开机;  2. 开机  首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性;  

轮廓仪的主要功能和测量方式

  主要功能  可测量各种槽形零件的槽深、槽宽及各种倒角的角度、宽度、深度、圆角的半径、位置等参数。双沟/单沟轴承套圈的测量,可测零件的圆心位置、半径、沟形偏差、圆心距、圆边距等参数。  测量方式  采用直角坐标测量法,触针接触式。机械部分采用精密气浮导轨为直线基准;电器部分由高级计算机及精密电感传

浅谈激光轮廓测量仪的原理是什么?

  激光轮廓测量仪是采用高精度激光位移传感器,非接触实时监测被测物轮廓变化数据的精密设备。它是将激光光源、光电检测和计算机工业控制技术相结合的光、机、电一体化的高新技术产品。   激光轮廓测量仪的原理:   通过电机驱动传感器进行扫描,通过水平分量和垂直分量的采集,得出被测曲面的轮廓数据。采取高

太阳辐射光谱

太阳光是一种波长很宽的电磁波,由0.1 nm~10 m以上。辐射强度主要集中在0.3~4μm波长范围(图2.4.1)占太阳光辐射的99%,0.2~0.38 μm是紫外光区,占日光能量的3%;0.38~0.78 μm是可见光区,占44%;0.78~4 μm是红外光区,占53%,所以太阳辐射不仅给地球送

光谱带宽的测试方法

摘要:国际上对光谱带宽的测试方法一般是采用“谱线轮廓法”。主要是选用某些光源的特征谱线,对它进行光谱扫描,绘出该谱线的轮廓,再测出该谱线的半峰高的宽度即为光谱带宽。用于光谱带宽测试的光源一般为线光谱光源。 目前,国际上对光谱带宽的测试方法一般是采用“谱线轮廓法”。主要是选用某些光源的特征谱线,对

傅里叶变换红外光谱仪结构组成

  傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成,是干涉型红外光谱仪的典型代表,不同于色散型红外仪的工作原理,它没有单色器和狭缝,利用迈克尔逊干涉仪获得入射光的干涉图,然后通过