什么是紫外光
紫外光,紫外辐射ultravioletlight,ultravioletradiation紫外光波长比可见光短,但比X射线长的电磁辐射。紫外光在电磁波谱中范围波长为10-400nm。这范围内开始于可见光的短波极限,而与长波X射线的波长相重叠。紫外光被划分为A射线、B射线和C射线(简称UVA、UVB和UVC),波长范围分别为400-315nm,315-280nm,280-190nm。......阅读全文
紫外光谱原理
在紫外光谱中,波长单位用nm(纳米)表示。紫外光的波长范围是10~380 nm,它分为两个区段。波长在10~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外,由于技术要求很高,目前在有机化学中用途不大。波长在20
紫外光谱原理
紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱有两个
紫外光谱原理
在紫外光谱中,波长单位用nm(纳米)表示。紫外光的波长范围是10~380 nm,它分为两个区段。波长在10~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外,由于技术要求很高,目前在有机化学中用途不大。波长在20
什么是紫外光
紫外光,紫外辐射ultravioletlight,ultravioletradiation紫外光波长比可见光短,但比X射线长的电磁辐射。紫外光在电磁波谱中范围波长为10-400nm。这范围内开始于可见光的短波极限,而与长波X射线的波长相重叠。紫外光被划分为A射线、B射线和C射线(简称UVA、UVB和
紫外光的辐射
紫外光试验箱就是用来模拟自然光阳中的紫外辐射和冷凝的。这样操作人员就免不了受到紫外辐射的影响,而紫外辐射是对人体会产生伤害的。 紫外辐射主要是对眼睛、面部暴露皮肤有辐射损伤,所以操作人员尽量不要直视灯管以防引起结膜炎。而且在使用时要注意不得使紫外线光源直接照射到人,以防皮肤产生红斑。 紫外光试验
紫外光谱的原理
紫外光谱是一种常用的分析技术,利用紫外光在样品中的吸收特性,来鉴定和分析样品的成分和结构。在紫外光谱仪中,样品受到特定波长的紫外线照射后,会吸收部分紫外光,使得出射光谱中出现吸收峰。这些吸收峰的大小和位置与样品的成分和结构有关,通过紫外光谱的原理对比标准光谱或者实验得到的光谱,可以确定样品的成分和结
什么是紫外光
紫外光,紫外辐射ultravioletlight,ultravioletradiation紫外光波长比可见光短,但比X射线长的电磁辐射。紫外光在电磁波谱中范围波长为10-400nm。这范围内开始于可见光的短波极限,而与长波X射线的波长相重叠。紫外光被划分为A射线、B射线和C射线(简称UVA、UVB和
什么是紫外光
紫外光,紫外辐射ultravioletlight,ultravioletradiation紫外光波长比可见光短,但比X射线长的电磁辐射。紫外光在电磁波谱中范围波长为10-400nm。这范围内开始于可见光的短波极限,而与长波X射线的波长相重叠。紫外光被划分为A射线、B射线和C射线(简称UVA、UVB和
紫外光谱是什么
紫外光谱是是带状光谱。在紫外光谱中,波长单位用nm(纳米)表示。紫外光的波长范围是10~380 nm,它分为两个区段。波长在10~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外。
什么是紫外光
紫外光,紫外辐射ultravioletlight,ultravioletradiation紫外光波长比可见光短,但比X射线长的电磁辐射。紫外光在电磁波谱中范围波长为10-400nm。这范围内开始于可见光的短波极限,而与长波X射线的波长相重叠。紫外光被划分为A射线、B射线和C射线(简称UVA、UVB和
什么是紫外光谱
配合物组成及其稳定常数的测定 定量分析结构分析定性分析应用范围定义紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.。当分子中的电子吸收能量后会从基态跃迁到激发态,然后放出能量(辐射出特征谱线)。回到基态 而辐射出特征普线的波长在紫外区中就叫做
紫外光谱仪原理
紫外分光光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光
紫外光纤耦合器
光纤耦合器使用光纤探头可保持样品完整性,增强您实验室的远距离采样能力。Thermo Scientific™ Evolution™ 光纤耦合器,与 Thermo Scientific™ Evolution™ 分光光度计配合使用,让您可以使用我们的一种光纤探头或装备有标准 SMA 接头的任何第三
紫外光谱图怎么分析
这要看你检测的是什么啊?不同物质产生不同波段,有些是测像素 有些测波段 看你测什么了
紫外光谱仪概述
紫外/可见光谱仪,是利用紫外可见光谱法工作的仪器。普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成。紫外/可见光谱仪设计一般都尽量避免在光路中使用透镜,主要使用反射镜,以防止由仪器带来的吸收误差。当光路中不能避免使用透明元件时,应选择对紫外/可见光均透明的材料(如样
紫外光谱的波长范围
紫外光谱的波长范围是400nm以下。可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。紫外光是电磁波谱中波长从0.01~0.40微米辐射的总称,不能引起人们的视觉。
紫外光谱的波长范围
波长范围是10~380 nm,它分为两个区段。波长在10~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外,由于技术要求很高,目前在有机化学中用途不大。波长在200~380 nm称为近紫外区,一般的紫外光谱是指这
紫外光谱的波长范围
波长范围是10~380 nm,它分为两个区段。波长在10~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、二氧化碳和水所吸收,因此只能在真空中进行研究工作,故这个区域的吸收光谱称真空紫外,由于技术要求很高,目前在有机化学中用途不大。波长在200~380 nm称为近紫外区,一般的紫外光谱是指这
顺反异构的紫外光谱
紫外光谱顺反异构多指双键或环上取代基在空间排列不同而形成的异构体。其紫外光谱有明显差别,一般反式异构体电子离预范围较大,键的张力较小,π—>π*跃迁位于长波端,吸收强度也较大。
紫外光谱εmax怎么计算
紫外光谱εmax的计算方法主要有两种:一种是采用紫外-可见光谱仪,测量样品的吸收光谱,从而计算出εmax;另一种是采用紫外光谱仪,测量样品的吸收光谱,从而计算出εmax。首先,根据紫外光谱仪测量的样品吸收光谱,绘制出样品的吸收曲线,然后,从吸收曲线中找出最大的吸收率,即εmax;其次,根据紫外-可见
紫外光谱的光谱图
右图是乙酸苯酯的紫外光谱图。紫外光谱图提供两个重要的数据:吸收峰的位置和吸收光谱的吸收强度。从图中可以看出,化合物对电磁辐射的吸收性质是通过一条吸收曲线来描述的。图中以波长(单位nm)为横坐标,它指示了吸收峰的位置在260 nm处。纵坐标指示了该吸收峰的吸收强度,吸光度为0.8。吸收光谱的吸收强度是
极紫外光刻新技术问世
据日本冲绳科学技术大学院大学(OIST)官网最新报告,该校设计了一种极紫外(EUV)光刻技术,超越了半导体制造业的标准界限。基于此设计的光刻设备可采用更小的EUV光源,其功耗还不到传统EUV光刻机的十分之一,从而降低成本并大幅提高机器的可靠性和使用寿命。 在传统光学系统中,例如照相机、望远镜和
关于紫外光的用途介绍
功能一:杀菌 这是紫外线的最常见功能。由于紫外线对于生物有强大的杀伤力,因此人类就用它来对付这些难缠的细菌、病毒,我们也常常利用阳光来杀菌。 不过,要特别注意的是,这些杀菌设备一样会伤害人体,因此在使用的时候要特别小心。 功能二:鉴定与透视 由于紫外线比一般的可见光更具有穿透能力,所以科学
紫外光源可以选择哪些灯
工作原理:广明源UV光解紫外线灯利用“光解氧化”原理,使有机高分子有机废气分子链在高能紫外线光束照射下,降解转变成低分子化合物,并进一步降解为无害的CO2、H2O等;利用高能高臭氧UV紫外线光分解空气中的氧分子产生游离氧,即活性氧,进而产生臭氧,对有机气体进行分解;同时在紫外线的作用下,臭氧与空
紫外光清洗的工作原理
一、紫外光清洗的工作原理:光清洗技术是利用有机化合物的光敏氧化作用达到去除黏附在材料表面上的有机物质,经过光清洗后的材料表面可以达到"原子清洁度"。更详尽的讲:UV光源发射波长为185nm和254nm的光波,具有很高的能量,当这些光子作用到被清洗物体表面时,由于大多数碳氢化合物对185nm波长的紫外
紫外光谱鉴别法的原理
紫外光谱鉴别法的原理如下:紫外光谱法所用仪器为紫外吸收分光光度计或紫外可见吸收分光光度计。光源发出的紫外光经光栅或棱镜分光后,分别通过样品溶液及参比溶液,再投射到光电倍增管上,经光电转换并放大后,由绘制的紫外吸收光谱可对物质进行定性分析。由于紫外线能量较高,故紫外吸收光谱法灵敏度较高;同时,本法对不
光刻机的紫外光源
曝光系统最核心的部件之一是紫外光源。 常见光源分为: 可见光:g线:436nm 紫外光(UV),i线:365nm 深紫外光(DUV),KrF 准分子激光:248 nm, ArF 准分子激光:193 nm 极紫外光(EUV),10 ~ 15 nm 对光源系统的要求 a.有适当的波长。
紫外光谱图怎么看
下面是一些基本的方法和技巧来解读紫外光谱图:观察吸收峰的位置和强度:在紫外光谱图上,吸收峰的位置和强度通常与化学键的构型和官能团有关。因此,观察吸收峰的位置和强度可以推断分子中化学键和官能团的类型和位置。分析波长范围:紫外光谱图通常在200-400纳米波长范围内进行测量。观察吸收峰的位置和强度,还应
紫外光谱图怎么看
观察吸收峰的位置和强度:在紫外光谱图上,吸收峰的位置和强度通常与化学键的构型和官能团有关。因此,观察吸收峰的位置和强度可以推断分子中化学键和官能团的类型和位置。分析波长范围:紫外光谱图通常在200-400纳米波长范围内进行测量。观察吸收峰的位置和强度,还应该注意到这些峰值出现的波长范围。不同类型的官
紫外光度计的功能介绍
紫外光度计(又名紫外可见分光光度计、紫外分光光度计)是采用最新的单片机技术,开发出能够进行定量测量(标准曲线测量,可对物质进行浓度直读);OD值直接测量(吸光度、透过率和能量等直读);动力学测试(测出物质浓度随时间变化OD值的变化);光谱扫描(可以对某一种物质进行全波段扫描,分析物质的特征波长,判断