原子荧光法(含砷、硒、锑、铋)的方法原理
在消解处理水样后加入硫脲,把砷、锑、铋还原成三价,硒还原成四价。在酸性介质中加入硼氢化钾溶液,三价砷、锑、铋和四价硒分别形成砷化氢、锑化氢、铋化氢和硒化氢气体,由载气(氢气)直接导入石英管原子化器中,进而在氩氢火焰中原子化。基态原子受特种空心阴极灯光源的激发,产生原子荧光,通过检测原子荧光的强度,利用荧光强度与溶液中的砷、锑、铋和硒含量呈正比的关系,计算样品溶液中相应成分的含量。......阅读全文
原子荧光光谱仪测定各元素注意事项
原子荧光光谱仪测定元素主要有砷和锑、铋和汞、硒和碲、锗、铅、镉等,各个元素测定时,实验条件对于实验结果的影响很大。这些元素该怎么优化啊?1. 砷和锑砷和锑可同时测定;测定砷和锑关键是将As(Ⅴ)、Sb(Ⅴ)还原为As(Ⅲ)、Sb(Ⅲ),常用各50g/L硫脲和抗坏血酸作还原剂,可在2-30%的盐酸、硫
火焰原子吸收法测定锑的方法原理
锑的化合物在微富燃的空气-乙炔火焰中原子化具有较好的灵敏度,用火焰中锑的基态原子,对其空心阴极灯发射的特征谱线217.6 nm的吸收进行定量。
原子荧光法食品检测相关标准
近日公开发布了《关于深化改革加强食品安全工作的意见》,在《意见》中提出将要建立严谨的标准,实施严格的监管,并明确指出要在2020年初步建立食品安全监管体系。可见在未来的两年时间里,食品标准的制修订将会是我国食品安全的主要内容。随着食品中重金属超标现象的愈加严重,食品中重金属的检测已经成为食品样
原子荧光光度计助力大气检测
水、大气、土壤的防治是我国环保事业的重要组成,其中大气污染无色无味较水、土壤更容易让人忽略。特别是秋冬季节,大气污染物不容易扩散,大气环境的监测就更加重要了。虽然不同的区域下,大气污染物的情况有所不同,但主要由氮氧化物、二氧化硫、悬浮颗粒物以及砷、硒、铋、锑、等含毒的重金属及其化合物组成。因此,除了
原子荧光光谱仪的组成和用途简介
原子荧光光谱法(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。它的基本原理是基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。 组成:蒸气发生系统、原子化系统、光学系统、气路系统、电路系统 用
一文了解原子荧光光谱原理的优缺点
原子荧光光谱法的优点是,某些元素(汞、砷、镉等)灵敏度非常高,价格很便宜。 缺点是可测的元素种类很少,一般认为只能测汞、砷、镉、锑、铋、硒、锡、碲、锗、铅、锌。
原子荧光光谱法-同时测定食盐中砷、锑和汞的含量
原子荧光光谱法 同时测定食盐中砷、锑和汞的含量 本文应用3通道双光束原子荧光光度计同时测定食盐中砷、锑和汞元素的含量,并对方法进行了验证。实验结果表明:参考国标方法,用微波消解食盐样品,同测砷、锑、铋和汞四种元素,方法检出限为As 0.0004μg/g,Sb 0.0005μg/g,Bi 0
土壤检出限怎么算
我们了解到,针对全国土壤详查任务,主要涉及到的无机金属项目共17种,它们分别是铅、砷、镉、汞、铜、锌、镍、铬、钴、钒、锑、铊、钼、锰、铍和锡。今天主要跟大家介绍一下各种无机金属元素的分析方法。 对于各种无机金属的分析方法,详见下表: 一、ICP-MS法 目前国内环境领域尚无ICP-MS法的
土壤检出限怎么算
我们了解到,针对全国土壤详查任务,主要涉及到的无机金属项目共17种,它们分别是铅、砷、镉、汞、铜、锌、镍、铬、钴、钒、锑、铊、钼、锰、铍和锡。今天主要跟大家介绍一下各种无机金属元素的分析方法。 对于各种无机金属的分析方法,详见下表: 1.jpg 一、ICP-
原子荧光光度计食品检测相关标准
近日公开发布了《关于深化改革加强食品安全工作的意见》,在《意见》中提出将要建立严谨的标准,实施严格的监管,并明确指出要在2020年初步建立食品安全监管体系。可见在未来的两年时间里,食品标准的制修订将会是我国食品安全的主要内容。随着食品中重金属超标现象的愈加严重,食品中重金属的检测已经成为食品样
原子荧光法测定水样中砷含量的方法的适用范围
方法的适用范围方法每测定一次所需溶液为2~5 ml,方法检出限砷、锑、铋为0.0001~0.0002 mg/L;硒为0.0002~0.0005 mg/L。本方法适用于地表水和地下水中痕量砷、锑、和硒的测定。水样经适当稀释后亦可用于污水和废水的测定。
原子荧光和原子吸收具体有什么同异处
原子吸收光谱法(AAS)原子吸收光谱法是依据自由基态原子对特征辐射光的共振吸收,通过测量辐射光的减弱程度,而求出样品中被测元素的含量.由于本法的灵敏度高,分析速度快,仪器组成简单,操作方便,特别适用于微量分析和痕量分析,因而获得广泛的应用,在我国实验室普遍使用.大多数情况下,原子吸收分析过程如下:1
应用原子荧光光度计测锑需要注意事项
随着科学技术的发展,锑(Sb)现已被广泛用于生产各种阻燃剂、合金、陶瓷、玻璃、颜料、半导体元件、医药及化工等产品。另一方面锑对人体及环境生物具有毒性作用,锑及其化合物已经被许多国家列为重点污染物。因此产品中的锑含量必须控制在一个安全的范围内才可以让锑更好的为我们服务。所以锑含量的检测对于锑的应用有着
原子荧光的测定与注意事项
原子荧光法作为新型监测分析技术,以其据对的优势提高了对无机元素的监测,同时选择最佳的工作参数能够为原子荧光测定精确性提供有利依据,主要涉及到原子荧光测定中空心阴极灯、观测高度、载气流量、屏蔽气的具体流量、选择其他条件以及最佳的氢化反应条件的参数选择。 原子荧光的定义 原子荧光法是测定无机
原子荧光分光光度计是干什么用的
主要是用来做重金属检测的,就比如SK-乐析原子荧光光度计就是主要用来做砷、锑、铋、硒、铅、碲、锡、锌、锗、镉、汞重金属检测的。
原子荧光法测定水样中砷含量的方法的操作步骤
计算由校准曲线查得测定溶液中各元素的浓度,再根据水样的预处理稀释体积进行计算。式中:C——从校准曲线上查得相应测定元素的浓度(μg/L);V1——测量时水样的总体积(ml);V2——预处理时移取水样的体积(ml)。精密度用本方法六次测定含As、Sb、Bi、Se分别为4.3 μg/L,3.0 μg/L
原子荧光法测定水样中砷含量的方法的操作步骤
操作步骤(1)样品预处理清洁的地下水和地表水,可直接取样进行测定。污水等按下述步骤进行预处理。取50 ml污水样于100 ml锥形瓶,加入新制的HNO3-HCIO4(1+1)5 ml,于电热板上加热至冒白烟后,取下冷却,再加5ml HCl(1+1)加热至褐色烟冒尽,冷却后用水转移到50 ml容量瓶中
原子荧光光度计可以检测哪些项目
原子荧光光度计利用惰性气体作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。
原子荧光都可以检测什么
原子荧光都可以检测什么原子荧光光度计利用惰性气体作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级.
原子荧光光度计
原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。
原子荧光光谱仪
原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。
关于原子荧光光谱仪的简介
原子荧光光谱仪利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。
原子荧光光谱仪的定义
原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。
原子荧光光谱仪
原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。
原子荧光光谱仪的基本介绍
原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。
原子荧光光谱仪和原子荧光光度计
原子荧光光谱仪及原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。