原子荧光法(含砷、硒、锑、铋)的方法原理

在消解处理水样后加入硫脲,把砷、锑、铋还原成三价,硒还原成四价。在酸性介质中加入硼氢化钾溶液,三价砷、锑、铋和四价硒分别形成砷化氢、锑化氢、铋化氢和硒化氢气体,由载气(氢气)直接导入石英管原子化器中,进而在氩氢火焰中原子化。基态原子受特种空心阴极灯光源的激发,产生原子荧光,通过检测原子荧光的强度,利用荧光强度与溶液中的砷、锑、铋和硒含量呈正比的关系,计算样品溶液中相应成分的含量。......阅读全文

原子荧光维护保养要点

1、开机顺序:电脑—仪器主机—自动进样器—进入操作软件2、更换元素灯时一定要关闭仪器主机电源3、要保证足够的仪器预热时间4、测试前一定要开启氩气,氩气的作用有三种:分别是载气、屏蔽气和提供氢氩火焰的助燃气5、二级水封一定要用水密封6、测量结束后一定要用蒸馏水清洗,并清理仪器台面,以免酸腐蚀仪器7、测

多功能原子吸收光谱仪与原子吸收光谱仪的差别

多功能原子吸收光谱仪应用范围:  原子吸收光谱仪广泛应用在医院、制药、钢铁、卫生防疫、金属冶炼业、地矿地质、化工、水质监测、食饮乳品、环保监测、质检、药检、农业、玩具、电子等各行业的分析化验。多功能原子吸收光谱仪 检测方法:原子吸收火焰法:  原子吸收火焰法(空气—乙炔)测定元素可检测到PPM级。 

多功能原子吸收光谱仪与原子吸收光谱仪的差别

多功能原子吸收光谱仪应用范围:  原子吸收光谱仪广泛应用在医院、制药、钢铁、卫生防疫、金属冶炼业、地矿地质、化工、水质监测、食饮乳品、环保监测、质检、药检、农业、玩具、电子等各行业的分析化验。多功能原子吸收光谱仪 检测方法:原子吸收火焰法:  原子吸收火焰法(空气—乙炔)测定元素可检测到PPM级。 

荧光分光光度计和原子荧光分光计的区别

荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器。不但可以做一般的定量分析, 而且还可以推断分子在各种环境下的构象变化, 从而阐明分子结构与功能之间的关系。例如现在疫情期间核酸检测就需要荧光光度计;原子荧光则是原子蒸气通过吸收特定波长的光辐射能量而被激发至激发态,受激发原子在去活化过

原子荧光法测定水样中砷含量的方法的仪器及测量条件

仪器及测量条件①砷、锑、铋、硒高强度空心极灯;②原子荧光光谱仪(工作条件如表1所示) 测定条件元素灯电流(mA)负高压(V)氩气流量(ml/min)原子化温度(℃)砷40~60240~2601000200锑60~80240~2601000200铋40~60250~2701000300硒90~1002

价态对氢化物原子吸收测定湖水中各元素的影响

     摘要:使用氢化物原子吸收法,第五族氧化态较高的元素获得较低的峰值灵敏度。五价铋合物一般不稳定,因此在天然水中不存在。      氢化物原子吸收法对第VI族元素六价的硒和碲几乎得不到可测信号。因此为了测定天然水中这几个元素需要予还原。由于硒和碲的两种氧化态其灵敏变具有显著的差异,因此除了测定

原子吸收光谱仪的检测方法和可测微量元素

1、   原子吸收火焰法:原子吸收火焰法(空气—乙炔)测定元素可检测到PPM级。锂(Li),钠(Na),钾(K),铷(Rb),铯(Cs),镁(Mg),钙(Ca),锶(Sr),钡(Ba),铬(Cr),锰(Mn),铁(Fe),钴(Co),镍(Ni),铑(Rh),钯(Pb),  铂(Pt),金(Au),铜

硒化锑的制备方法

制备方法称取反应原料2mmolSb、3mmolSe和助熔剂10mmolCsCl,混合后获得前驱体,对前驱体进行充分研磨,使其混合均匀;将混合后的样品装入石英瓶中,利用真空泵机组抽真空达到10~102Pa(也可以用惰性气体保护),从而排除空气对熔盐反应的影响,用氢氧焰将石英瓶封口;将密封Chemica

一文详览土壤有机汞测定用的标准

  本专题涉及土壤 有机汞的标准有33条。(标准链接)  国际标准分类中,土壤 有机汞涉及到土质、土壤学、词汇、废物、有色金属、肥料、物理学、化学、农业和林业、土方工程、挖掘、地基构造、地下工程、环境保护。  在中国标准分类中,土壤 有机汞涉及到土壤、肥料综合、土壤环境质量分析方法、、、大气、水、土

“土十条”土壤样品前处理标准解读(二)

对于土壤中金属元素的分析通常使用下表列举的相关分析方法:涉及到土壤中金属元素分析的相关分析方法土壤样品前处理方法:目前常见的土壤消解方法有两种:微波消解法和敞口电热板消解法,由于敞口电热板方法使用酸的种类多,一般都要使用硝酸,氢氟酸,高氯酸,且使用量大,消解时间长,且使用到高氯酸,危险系数大,耗时耗

关于原子荧光光谱法的简介

  原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。  原子荧光光谱法(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。它的基本原理是基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被

什么是原子荧光光谱法?

  原子荧光光谱法(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。它的基本原理是基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被激发

原子荧光光谱法-同时测定食盐中砷、锑、铋和汞的含量

食盐是人们日常生活中不可替代的特殊调味品,但如果食盐中含有砷、锑、铋、汞等重金属,便会危害人们的身体健康。GB2762-2017《食品安全国家标准 食品中污染物限量》中明确规定了食盐中砷、汞、铅、镉等元素的限量指标,并且指明了砷和汞的检验方法,按GB 5009.11和GB 5009.17规定的方法测

​ICP原子发射光谱仪氢化物发生法实现原子化的原理

ICP原子发射光谱仪氢化物发生法实现原子化的原理:在酸性介质中,以硼qin化钾作为还原剂,使锗、锡、铅、砷、锑、铋、硒和碲还原生成共价分子型氢化物的气体,然后将这种气体引入火焰或加热的石英管中,进行原子化。

原子荧光光谱法的原理及特点

  原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。  

原子荧光光谱仪与吸收光谱仪的主要区别是什么?

  原子荧光光谱仪利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。原子荧光光谱法是通过测量

砷、锑、铋、汞、银化物速测盒(铜片法)

【简 介】 最常见的砷化物为三氧化二砷,俗称砒霜、白砒等,农业上用的粗制品呈微红色,俗称红砒,其它的砷化物有砷酸盐和亚砷酸盐等。常见的汞化物有氯化汞 ( 升汞 )和氯化亚汞 ( 甘汞 ),硝酸汞及有机汞制剂如赛力散 ( 醋酸苯汞 )、西力生 ( 氯化乙基汞 ) 等。凡是可溶于水或稀酸的砷化物

石墨炉原子吸收光谱法测定不锈钢中砷锑锡铋铅

不锈钢中五害元素的存在会严重降低材料的机械性能,极易使不锈钢的持久强度及塑性降低,因此其含量必须严格控制。目前,文献报道的测定钢铁及其合金中的As、Sb、Sn、Bi、Pb的方法主要有可见分光光度法、原子吸收光谱法、电化学分析法、萃取-石墨炉原子吸收光谱法等。石墨炉原子吸收光谱法选择性好,绝对灵敏度极

土壤样品前处理标准解读及解决方案

土壤,作为人类乃至整个生物界赖以生存的根基,为人类提供了栖息地和食物,随着人类的活动,污染越来越严重。  土壤重金属污染(Heavy Metal Pollution of the Soil)是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高,统称为土壤重金属污染

水质检测中可应用的原子荧光光度计标准

  水是生命之源,但由于人类的活动,导致地表、地下水体的污染,水质恶化.第五届“水质分析技术与应用”主题网络研讨会(2020)邀请水质检测、监测领域的专家针对当下水质检测、监测领域研究热点进行探讨.其中水质检测作为水污染控制工作中的基础性工作,为环境管理提供数据和资料对水质污染防控有重要作用.拥有我

水质检测中可应用的原子荧光光度计标准

  水是生命之源,但由于人类的活动,导致地表、地下水体的污染,水质恶化。第五届“水质分析技术与应用”主题网络研讨会(2020)邀请水质检测、监测领域的专家针对当下水质检测、监测领域研究热点进行探讨。其中水质检测作为水污染控制工作中的基础性工作,为环境管理提供数据和资料对水质污染防控有重要作用。拥有我

含锑水样的测定方法

含锑废水测定,可根据实验室具体条件选用下述方法:5-Br-PADAP光度法;原子吸收光度法或原子荧光法。

新银盐分光光度法测定水样砷含量的干扰因素

干扰及消除本方法对于砷的测定具有较好的选择性。但在反应中能生成与砷化氢类似氢化物的其它离子有正干扰,如锑、铋、锡、锗等;能被氢还原的金属离子有负干扰,如镍、钴、铁、锰、镉等;常见阴阳离子没有干扰。在含2 μg砷的250 ml试样中加入15%的酒石酸溶液20 ml,可消除为砷量800倍的铝、锰、锌、镉

原子荧光光谱法介绍

原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。

实验室分析方法原子荧光光谱法

原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。

原子荧光光谱法简介

原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。

分析技术和仪器设备更新换代

元素分析中原子荧光得到广泛应用 原子荧光光谱(AFS)的基本原理是:基态原子(一般为气态)吸收合适的特性频率的辐射而被激发至高能态,激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,根据其特征及强度,确定化学元素及含量,实际分析中使用共振能级跃迁,即共振荧光检测。 氢 化

水质检测中可应用的原子荧光光度计标准

   水是生命之源,但由于人类的活动,导致地表、地下水体的污染,水质恶化。第五届“水质分析技术与应用”主题网络研讨会(2020)邀请水质检测、监测领域的专家针对当下水质检测、监测领域研究热点进行探讨。其中水质检测作为水污染控制工作中的基础性工作,为环境管理提供数据和资料对水质污染防控有重要作用。拥有

火焰原子吸收法测定锑的方法原理

锑的化合物在微富燃的空气-乙炔火焰中原子化具有较好的灵敏度,用火焰中锑的基态原子,对其空心阴极灯发射的特征谱线217.6 nm的吸收进行定量。

硒化锑的特点和制备方法

特点硒化锑(Sb2Se3)是一种二元单相化合物,由于其原料储量大、毒性低、价格便宜,能带宽度合适(~1.15eV),吸光系数大(>105cm-1),晶体生长温度低,非常适合制作新型低成本低毒的太阳能电池。制备方法称取反应原料2mmolSb、3mmolSe和助熔剂10mmolCsCl,混合后获得前驱体