由摩擦效应产生X射线的新型XRF技术

摩擦发光是一种通过机械作用(如拉动、撕裂、刮擦、压碎或者不同材料间的摩擦等)而产生光的现象。例如,当敲碎蔗糖晶体时或者剥离胶带时就能观察到这种现象;这种现象从很久之前的古文明时期就被人们所发现。20世纪80年代,人们发现在X射线能量范围内,真空管内的机械作用能够产生光;2008年,一批来自美国加州大学洛杉矶分校的物理学家受到美国国防部高级研究计划局资助,对这一发现进行了进一步的扩大和研究,并证明了他们能够以一种有效且可重复的方式通过摩擦发光现象产生X射线。 研究结果表明,利用摩擦发光产生X射线对于降低X射线产生的复杂性和成本具有非常深远的影响。人们能够通过机械性的将材料挤压到一起再将其拆分以达到摩擦起电效应,进而在目标阳极释放掉足够多的电子以产生必要数量的X射线进行X射线荧光分析操作。简言之就是利用一套机械性体系取代高压电源来产生X射线。这项创新能够降低整个X射线荧光光谱仪的成本达50%左右,并且有助于提升手持式X射线荧光......阅读全文

XRF收购Coltide的X射线荧光漂移监测业务

  总部位于墨尔本的XRF公司将收购Coltide 的x射线荧光漂移监测业务。   Coltide是阿德莱德的一家X射线荧光漂移监测仪器制造商和供应商,X射线荧光漂移监测仪器由矿业公司和研究机构进行元素精确校准。Coltide由Keith Norrish博士创立,他是将波长色散X射线荧光光谱

微-X-射线荧光-(µXRF)的基本信息介绍

  微 X 射线荧光 (µXRF) 是一种元素分析技术,它允许检测非常小的样品区域。与传统的 XRF 仪器一样,微 X 射线荧光通过使用直接 X 射线激发来诱导来自样品的特性 X 射线荧光发射,以用于元素分析。与传统 XRF 不同(其典型空间分辨率的直径范围从几百微米到几毫米),µXRF 使用 X

X射线荧光光谱仪(XRF)的应用

可以进行固体、粉末、薄膜、液体样品及不规则样品的无标样元素的定性定量分析。主要用于金属、无机非金属等材料中化学元素的成分分析,X射线荧光光谱法XRF测试的元素范围包含有效的元素测量范围为1号元素 (Na)到92号元素(U)

X射线荧光光谱仪的理论基础X射线的产生

  高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。  产生X射线源有同位素放射源、X射线管、激光等离子体、同步辐射和X射线激光等。

X射线荧光光谱仪(XRF)基本结构

  现代X射线荧光光谱分析仪由以下几部分组成;X射线发生器(X射线管、高压电源及稳定稳流装置)、分光检测系统(分析晶体、准直器与检测器)、记数记录系统(脉冲辐射分析器、定标计、计时器、积分器、记录器)。

X射线荧光光谱仪(XRF)-简介

X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF),是用晶体分光而后由探测器接收经过衍射的

XRF(X射线荧光光谱仪)选择宝典

能测RoHS指令的仪器很多,而且这些仪器无论是国产的还是进口的,都是属贵重仪器。如何选择不光是费用问题,更主要的使用问题。      对六种有害物质总量的定量检测: 一、 按日本商会欧盟分部的“依照RoHS指令的检测方法”。    该方法建议对来料先便携式(手持式)ROHS检测仪检测,能通过的就算合

X射线荧光光谱仪(XRF)基本结构

现代X射线荧光光谱分析仪由以下几部分组成;X射线发生器(X射线管、高压电源及稳定稳流装置)、分光检测系统(分析晶体、准直器与检测器)、记数记录系统(脉冲辐射分析器、定标计、计时器、积分器、记录器)。

X射线荧光光谱仪(XRF)的样品要求

  1.粉末样品需提供3-5g,样品要200目以下,完全烘干;  2.轻合金(铝镁合金)厚度不低于5mm,其他合金不小于1mm,其他材料厚度需满足3-5mm;  3.检测单元表面尽量平整,且长宽不超过45mm  4.粉末样品可能会使用硼酸压片,如有特殊要求,请提前说明

简述X射线荧光光谱仪(XRF)的应用

  可以进行固体、粉末、薄膜、液体样品及不规则样品的无标样元素的定性定量分析。主要用于金属、无机非金属等材料中化学元素的成分分析,X射线荧光光谱法XRF测试的元素范围包含有效的元素测量范围为1号元素 (Na)到92号元素(U)

能量色散-X-射线荧光-(ED-XRF)的相关介绍

  能量色散 X 射线荧光 (EDXRF) 是用于元素分析应用的两种通用型 X 射线荧光技术之一。在 EDXRF 光谱仪中,样品中的所有元素都被同时激发,而能量色散检测仪与多通道分析仪相结合,用于同时收集从样品发射的荧光辐射,然后区分来自各个样品元素的特性辐射的不同能量。EDXRF 系统的分辨率取决

X射线荧光光谱仪(XRF)的样品要求

1.粉末样品需提供3-5g,样品要200目以下,完全烘干;2.轻合金(铝镁合金)厚度不低于5mm,其他合金不小于1mm,其他材料厚度需满足3-5mm;3.检测单元表面尽量平整,且长宽不超过45mm4.粉末样品可能会使用硼酸压片,如有特殊要求,需提前说明。

X射线荧光光谱法XRF样品的要求

  1.粉末样品需提供3-5g,样品要200目以下,完全烘干;  2.轻合金(铝镁合金)厚度不低于5mm,其他合金不小于1mm,其他材料厚度需满足3-5mm;  3.检测单元表面尽量平整,且尺寸为4-4.5cm。

X射线光谱仪的吸收效应和增强效应

  吸收效应和增强效应,曲线a表示氢元素中重元素的X射线和含量的关系,种元素的分析光谱受轻元素发生的吸收效应较小,所以在低含量范围,重元素的X射线强度随含量的增加而迅速上升,重元素含量很高以后曲线的斜率就变小了;曲线b时分析由原子序数相近的元素所构成的样品时所得到曲线,待测元素自身吸收稍大于其他共存

X射线荧光光谱仪的表面效应

  样品表面状态和荧光谱线强度的关系不可忽视。当样品是由磨料、锯料或锋料制成大小一定的块状物体时,其表面必须经过适当的磨平或抛光。  荧光谱线强度不仅与样品的表面构造和纹沟的性质有关,而且也受样品位置、纹沟和进出X射线方向影响。对于后者,可以通过测量过程中同时转动样品减少或消除,如不能转动则应使纹沟

X射线荧光光谱仪(XRF)的基本分类

  作为一种比较分析技术,在一定的条件下,利用初级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析的仪器。  按激发、色散和探测方法的不同,分为:  X射线光谱法(波长色散)  X射线能谱法(能量色散)

XRFX射线荧光光谱仪的优点介绍

  X射线管产生入射X射线(一次X射线),激发被测样品。    受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。    探测系统测量这些放射出来的二次X射线的能量及数量。    然后,仪器软件将探测系统所收集到的信息转换成样品中各种

XRF之X射线金属成分无损快速分析仪

  自然界中大约有70多种金属,其中常见的有铁、铜、铝、锡、镍、金、银、铅、锌等。而合金是指两种或两种以上的金属或金属与非金属结合而成,具有金属特性的材料。    常见的合金如铁和碳所组成的钢合金;铁、铬、镍组成的不锈钢;铜和锌所形成的黄铜等。    金属材料通常分为黑色金属、有色金属和特种金属

XRF之X射线金属成分无损快速分析仪

  自然界中大约有70多种金属,其中常见的有铁、铜、铝、锡、镍、金、银、铅、锌等。而合金是指两种或两种以上的金属或金属与非金属结合而成,具有金属特性的材料。    常见的合金如铁和碳所组成的钢合金;铁、铬、镍组成的不锈钢;铜和锌所形成的黄铜等。    金属材料通常分为黑色金属、有色金属和特种金属

XRF之X射线金属成分无损快速分析仪

自然界中大约有70多种金属,其中常见的有铁、铜、铝、锡、镍、金、银、铅、锌等。而合金是指两种或两种以上的金属或金属与非金属结合而成,具有金属特性的材料。    常见的合金如铁和碳所组成的钢合金;铁、铬、镍组成的不锈钢;铜和锌所形成的黄铜等。    金属材料通常分为黑色金属、有色金属和特种金属材料。 

X射线衍射技术简介

物质结构的分析尽管可以采用中子衍射、电子衍射、红外光谱、穆斯堡尔谱等方法,但是X射线衍射是最有效的、应用最广泛的手段,而且X射线衍射是人类用来研究物质微观结构的第一种方法。X射线衍射的应用范围非常广泛,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验方法和结构分析手

2015年X射线荧光光谱(XRF)分析技术及应用培训班通知

  中仪标化(北京)技术咨询中心,是专业从事光谱、色谱、质谱等仪器分析培训、实验室培训、高级化学检验员培训的专业培训机构。是中国分析测试协会、中国仪器仪表学会分析仪器学会团体会员单位,国家质检总局质量技术监督行业国家资格取证委托培训单位。中仪标化目前已在全国各地成功举办100多期相关培训班,每年培训

探索星际介质的新型X射线光谱工具

  【导语】《天文学与天体物理学》将出版长期探索的X-射线天体源的光谱图——人类第一次成功探测得出。EXAFS图谱即延展X射线吸收精细结构光谱图。EXAFS是研究星际介质( ISM )颗粒结构一个有力的工具。它可给出更详细的化学成分和非晶颗粒的原子结构图片。     《天文学与天体物理学》艺

X射线荧光光谱仪的粒度效应介绍

  在荧光强度的推导公式中,假设的样品都是均匀且表面光滑的。但是实际上只有液体样品或经过充分抛光的纯金属或某些合金样品才能满足这些条件。对于其他固体样品特别是粉末样品常常存在着样品不均匀及粒度效应和表面效应。  均匀样品,对于固体粉末样品来说是指粉末的粒度和化学组成完全相同的样品。实验表明这种样品在

X射线荧光光谱分析技术的重要应用

  X射线荧光光谱分析技术属于一种能够实现快速分析的无损检测技术,新型、成本更低的X射线光谱仪更容易在被检测材料或者组件的整个生命周期内进行多元测量和验证。利用摩擦效应产生X射线的低成本、移动型X射线荧光光谱仪将会和原位检测或者实验室检测实现互补。  对于质量管理部门、冶金实验室、机械工厂、金属加工

简述X射线荧光光谱仪的重要意义

  X射线荧光光谱仪术属于一种能够实现快速分析的无损检测技术,新型、成本更低的X射线光谱仪更容易在被检测材料或者组件的整个生命周期内进行多元测量和验证。利用摩擦效应产生X射线的低成本、移动型X射线荧光光谱仪将会和原位检测或者实验室检测实现互补。  对于质量管理部门、冶金实验室、机械工厂、金属加工厂、

XRF9能量色散X射线荧光分析仪

  产品介绍   X射线荧光(XRF)分析技术是测定由初级X射线激发样品时所产生的二次特征X射线(X射线荧光),它是一种非破坏性分析方法,可实现固体和液体样品的多元素快速分析。XRF适合各类固体,液体样品中主,次多元素同时测定,检出限在mg/kg 量级范围内,制样方法简单,现已广泛应用于地质、材料

XRF9能量色散X射线荧光分析仪

产品介绍 X射线荧光(XRF)分析技术是测定由初级X射线激发样品时所产生的二次特征X射线(X射线荧光),它是一种非破坏性分析方法,可实现固体和液体样品的多元素快速分析。XRF适合各类固体,液体样品中主,次多元素同时测定,检出限在mg/kg 量级范围内,制样方法简单,现已广泛应用于地质、材料、环境、冶

X射线荧光光谱仪(XRF)基本原理

  X射线荧光光谱仪简称:XRF,适用于简单的元素识别和定量以及更加复杂的分析,X射线荧光光谱分析是确定物质中微量元素的种类和含量的一种方法。  荧光,顾名思义就是在光的照射下发出的光,它是利用一定波长的X射线照射材料,元素处于激发状态,从而激发出光子,形成一种荧光射线,由于不同元素的激发态的能量大

X射线荧光光谱仪(XRF)基本原理

X射线荧光光谱仪简称:XRF,适用于简单的元素识别和定量以及更加复杂的分析,X射线荧光光谱分析是确定物质中微量元素的种类和含量的一种方法。荧光,顾名思义就是在光的照射下发出的光,它是利用一定波长的X射线照射材料,元素处于激发状态,从而激发出光子,形成一种荧光射线,由于不同元素的激发态的能量大小不一样