光谱分析法的概念

利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法称为光谱分析法。 英文为spectral analysis或spectrum analysis。各种结构的物质都具有自己的特征光谱,光谱分析法就是利用特征光谱研究物质结构或测定化学成分的方法。......阅读全文

光谱分析法测定青蒿素含量

青蒿素仅在紫外区203nm处有极弱的末端吸收,不能直接采用紫外分光光度法(UV法)检测。因此需要将青蒿素通过碱或酸溶液进行衍生后才能产生具有紫外吸收的化合物(α、β-不饱和酮酸盐),在波长292nm或260nm处进行紫外检测。UV、高效液相色谱紫外检测法(HPLC-UV)都是基于以上原理。这类方法操

光谱分析法的分类和应用介绍

  1、概念  利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法称为光谱分析法。  英文为spectral analysis或spectrum analysis。各种结构的物质都具有自己的特征光谱,光谱分析法就是利用特征光谱研究物质结构或测定化学成分的方法。  2、分类  光谱分析法主

红外光谱分析法实验报告

红外光谱分析法实验报告一、 实验目的1、了解红外光谱仪的结构、工作原理和一般操作方法2、掌握一般固体样品的制样方法以及压片机的使用方法二、 实验原理1、红外吸收光谱简介及产生条件:红外吸收光谱又称为分子振动—转动光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运

核磁共振光谱定量分析法介绍

(一)特点:1、对于确定的核(质子),其信号强度与产生该信号的核(质子)的数目成正比,而与核的化学性质无关。2、利用内标法或相对比较法,分析混合物中某一化合物时可无需该化合物的纯品作对照。3、信号峰的宽度很窄,远小于各信号之间的化学位移的差值,因而混合物中不同组分的信号之间很少发生明显的重叠。4、方

原子吸收光谱分析法绝对分析法的种类及内容介绍

一、火焰原子吸收绝对分析法最初的研究工作主要集中在火焰原子吸收绝对分析方法上,但无人获得满意结果。 Magyar等研究了火焰原子吸收光谱绝对分析以测定铝实验结果证明实验与理论值之间的差异在三倍以上,用它做铝的半定量分析都是不可能的。 Slavin等指出火焰原子吸收光谱法不适合于绝对分析,其主要原因是

X射线荧光光谱分析法的简介

  X射线荧光光谱分析法,利用原级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。 [1] 在成分分析方面,X射线荧光光谱分析法是现代常规分析中的一种重要方法。

原子光谱分析法仪器有那些用途

途因为AES法能够用微量的试样同时进行数十种元素的定性和定量分析。直接分析固体试验时,多数元素的灵敏度接近1μg/g。对液体试样能检出浓度为1ng/ml的待测元素。 所以此法对微量成分的分析很有用。试样可以是固体、气体或液体,并且任何化合物都能进行分析,原子发射光谱应用的领域非常广泛。

光谱分析法仪器的分类和组成部件

光谱分析法基于六种现象,即吸收、荧光、磷光,散射,发射和化学发光,其测量仪器的组成虽略有不同,但大部分的基本元件十分相似。典型光谱分析仪包合5个组件:①松定的辐射源:②样品池;③波长选择器或频率调制器;④辐射检测器;⑤信号处理显示成录仪。

原子吸收分析法中的光谱干扰的概念

原子吸收分析法中的光谱干扰(optical interference),又叫光学干扰:主要有谱线抑制和背景干扰两种,是在光谱发射和吸收过程中产生的干扰。主要的解决方法是减小单色器的光谱通带的宽度,从而使元素的共振吸收线与干扰曲线完全分开,只允许共振吸收线通过;采用抑制或校正背景干扰的方法来减小误差:

原子吸收分析法中光谱干扰消除与抑制

按照光谱干扰分类为谱线干扰和背景干扰,光谱干扰的消除和抑制也可以划分为两类。首先,谱线干扰是由单色器光谱通带内进入了发射线的临近线或其他吸收线引起的,因此可通过提高仪器分辨度来减小误差,具体做法是减小单色器的光谱通带的宽度,从而使元素的共振吸收线与干扰曲线完全分开,只允许共振吸收线通过。此外,还可以

原子发射光谱分析法的用途

AES法能够用微量的试样同时进行数十种元素的定性和定量分析。直接分析固体试样时,多数元素的灵敏度接近1μg/g。对液体试样能检出浓度为1ng/ml的待测元素。 所以此法对微量成分的分析很有用。试样可以是固体、气体或液体,并且任何化合物都能进行分析,原子发射光谱应用的领域非常广泛。

原子发射光谱分析法的特点

原子发射光谱分析法的特点(1)可多元素同时检测各元素同时发射各自的特征光谱;(2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪);(3)选择性高各元素具有不同的特征光谱;(4)检出限较低10~0.1μg⋅g-1(一般光源);ng⋅g-1(ICP)(5)准确度较高5%~10% (一

原子吸收分析法中光谱干扰消除与抑制

按照光谱干扰分类为谱线干扰和背景干扰,光谱干扰的消除和抑制也可以划分为两类。首先,谱线干扰是由单色器光谱通带内进入了发射线的临近线或其他吸收线引起的,因此可通过提高仪器分辨度来减小误差,具体做法是减小单色器的光谱通带的宽度,从而使元素的共振吸收线与干扰曲线完全分开,只允许共振吸收线通过。此外,还可以

什么是透射和散射光谱分析法?

主要测定光线通过溶液混悬颗粒后的光吸收或光散射程度,常用方法为比浊法,又可称为透射比浊法和散射比浊法。临床上多用于对抗原或抗体的定量分析。

拉曼光谱分析法分析物质性质

  通过对拉曼光谱的分析可以知道物质的振动转动能级情况,从而可以鉴别物质,分析物质的性质。  天然鸡血石和仿造鸡血石的拉曼光谱有本质的区别:前者主要是地开石和辰砂的拉曼光谱,后者主要是有机物的拉曼光谱,利用拉曼光谱可以区别二者。  天然鸡血石“地”的主要成分为地开石,天然鸡血石样品“血”既有辰砂又有

光谱分析法检测青蒿素的介绍

  青蒿素仅在紫外区203nm处有极弱的末端吸收,不能直接采用紫外分光光度法(UV法)检测。因此需要将青蒿素通过碱或酸溶液进行衍生后才能产生具有紫外吸收的化合物(α、β-不饱和酮酸盐),在波长292nm或260nm处进行紫外检测。UV、高效液相色谱紫外检测法(HPLC-UV)都是基于以上原理。这类方

X射线荧光光谱分析法的特点

(1)分析速度快。  (2)X射线荧光光谱跟样品的化学结合状态及物理状态无关。  (3)非破坏分析。  (4)X射线荧光分析是一种物理分析方法,所以对化学性质上属于同一族的元素也能进行分析。  (5)分析精密度高。  (6) X射线光谱比发射光谱简单,故易于解析。  (7)制样简单。  (8)X射线

原子光谱分析法仪器有那些用途

原子光谱分析法仪器用途因为AES法能够用微量的试样同时进行数十种元素的定性和定量分析。直接分析固体试验时,多数元素的灵敏度接近1μg/g。对液体试样能检出浓度为1ng/ml的待测元素。 所以此法对微量成分的分析很有用。试样可以是固体、气体或液体,并且任何化合物都能进行分析,原子发射光谱应用的领域非常

原子发射光谱分析法的特点

  ⑴可多元素同时检测各元素同时发射各自的特征光谱;  ⑵分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪);  ⑶选择性高 各元素具有不同的特征光谱;  ⑷检出限较低 10~0.1mg×g-1(一般光源);ng×g-1(ICP)  ⑸准确度较高 5%~10% (一般光源);

原子发射光谱分析法的特点

  (1)可多元素同时检测各元素同时发射各自的特征光谱;  (2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪);  (3)选择性高各元素具有不同的特征光谱;  (4)检出限较低10~0.1μg⋅g-1(一般光源);ng⋅g-1(ICP)  (5)准确度较高5%~10% (一般光

原子吸收分析法中光谱干扰分类及原理

原子吸收分析法中的光学干扰主要有谱线抑制和背景干扰两种,是在光谱发射和吸收过程中产生的干扰。首先,谱线干扰是指在单色器光谱通带内,除了元素吸收线外,还射入了发射线的临近线或者其他吸收线。在进行元素测定时,仪器中总是不可避免地存在所测元素之外的一些东西,比如空心阴极灯的元素、杂质以及载气元素等,这些物

原子发射光谱分析法的用途

AES法能够用微量的试样同时进行数十种元素的定性和定量分析。直接分析固体试样时,多数元素的灵敏度接近1μg/g。对液体试样能检出浓度为1ng/ml的待测元素。 所以此法对微量成分的分析很有用。试样可以是固体、气体或液体,并且任何化合物都能进行分析,原子发射光谱应用的领域非常广泛。

分子荧光和磷光光谱分析法机理

产生机理1、荧光\磷光的产生       激发后分子的多重性可能改变( S/T两态).单重态: 所有电子自旋都配对的分子的电子状态。大多数有机物分子的基态是单重态。当处于基态的一对电子中的一个被激发到较高能级,其自旋方向没有改变,分子仍处于单重态。三重态:  有两个电子的自旋不配对而平行的状态。激发

原子发射光谱分析法的缺点

原子发射光谱分析法的缺点:只能用于元素分析,不能确定其存在的状态结构;非金属元素不能检测或灵敏度低。如惰性气体、卤素等元素几乎无法分析;仪器设备比较复杂、昂贵。

红外光谱分析法的常用术语解释

频峰由基态跃迁到第一激发态,产生的强吸收峰,称为基频峰(强度大);倍频峰由基态直接跃迁到第二、第三等激发态,产生弱的吸收峰,称为倍频峰;合频峰两个基频峰频率相加的峰;Fermi 共振某一个振动的基频与另外一个振动的倍频或合频接近时,由于相互作用而在该基频峰附近出现两个吸收带,这叫做 Fermi 共振

红外光谱分析法红外光谱峰的位置、峰数与强度

1.位置:由振动频率决定,化学键的力常数 K 越大,原子折合质量 m 越小,键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低波数区(高波长区);2.峰数:分子的基本振动理论峰数,可由振动自由度来计算,对于由 n 个原子组成的分子,其自由度为3 n3n= 平动自由度+振动自由度+转

原子吸收光谱分析法一般步骤

一般的手续是将溶样将样品中待测元素进入溶液(火焰法),分离可能存在的干扰,然后用原吸仪器测定溶液中的待测元素吸光度值。计算出溶液中该元素的浓度。

荧光光谱分析法应该注意哪些影响因素

一般有两个原因:1 样品不是硅玻璃,或者硅含量很少。2 x射线是否照射在样品上,一般来说,样品至少需要1平方毫米的一个平面,x射线要直接照射在这个平面上,玻璃纤维一般是极细的圆柱。x射线荧光定性分析不同元素的荧光X射线具有各自的特定波长,因此根据荧光X射线的波长可以确定元素的组成。如果是波长色散型光

拉曼光谱分析法监测水果表面残留农药

  在处理好的水果表面撕取一小片果皮,在水果表面分别滴上一滴不同的农药,农药就会浸润到果皮上。用吸水纸擦拭果皮上的农药液体,然后把残留有农药的果皮压入铝片的小槽中,保证使残留农药的果皮表面呈现在铝片小槽的外面,然后把压出来的汁液用吸水纸擦拭干净。  不同种类的水果表面滴加植保博士后得到的拉曼谱。很明

原子吸收光谱分析法背景吸收的概念

背景吸收是原子化器中的气态分子对光的吸收或高浓度盐的固体微粒对光的散射而引起的。