Antpedia LOGO WIKI资讯

中外学者“超快操控”硅基自旋量子比特

中国科学技术大学郭光灿院士团队郭国平教授、李海欧研究员近期与国内外学者合作,实现了硅基自旋量子比特的超快操控,其自旋翻转速率超过540兆赫,是目前国际上已报道的最高值。相关成果日前在线发表于《自然-通讯》。 硅基半导体自旋量子比特是量子计算研究的核心方向之一,其具有长量子退相干时间、高操控保真度等独特优势,并且可以很好地与现代半导体工艺技术兼容。高操控保真度要求量子比特在拥有较长量子退相干时间的同时具备更快的操控速率,而使用材料中天然存在的自旋轨道耦合可以更有效地操控自旋量子比特。 近年来,硅基锗空穴体系中的自旋轨道耦合研究和实现超快自旋量子比特操控是该领域关注的热点。自旋轨道耦合场的方向会影响自旋比特操控速率及比特初始化与读取的保真度。因此,测量并确定自旋轨道耦合场的方向,是实现高保真度自旋量子比特的首要任务。 郭光灿院士团队2021年首次在硅基锗量子线空穴量子......阅读全文

中外学者“超快操控”硅基自旋量子比特

中国科学技术大学郭光灿院士团队郭国平教授、李海欧研究员近期与国内外学者合作,实现了硅基自旋量子比特的超快操控,其自旋翻转速率超过540兆赫,是目前国际上已报道的最高值。相关成果日前在线发表于《自然-通讯》。 硅基半导体自旋量子比特是量子计算研究的核心方向之一,其具有长量

中国科研团队实现硅基半导体自旋量子比特的超快操控

  记者13日从中国科学技术大学郭光灿院士团队获悉,该科研团队实现硅基半导体自旋量子比特的超快操控,其自旋翻转速率超过540MHz,是目前国际上已报道的最高值。研究成果11日在线发表在国际知名期刊《自然·通讯》上。  量子计算在原理上可通过特定算法,在一些具有重大社会和经济价值的问题方面获得比经典计

硅基量子芯片自旋轨道耦合强度实现高效调控

  中国科学技术大学郭光灿院士团队郭国平教授、李海欧教授等人与中科院物理所张建军研究员、纽约州立大学布法罗分校胡学东教授以及本源量子计算有限公司合作,在硅基锗空穴量子点中实现了自旋轨道耦合强度的高效调控,为该体系实现自旋轨道开关以及提升自旋量子比特的品质提供了重要的指导意义。研究成果日前在线发表于《

我所实现胶体量子点自旋的室温超快相干操控

近日,我所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点自旋光物理研究中取得重要进展,率先实现了室温下对低成本溶液法制备的胶体量子点的自旋相干操控。这一成果在量子信息科学、超快光学相干操控等领域具有重要意义。   量子信息技术是指以微观粒子(或准粒子)的量子态表示信息,并利用量子力学原理

研究实现硅基量子芯片自旋轨道耦合强度高效调控

  中国科学技术大学郭光灿院士团队在硅基半导体量子芯片研究中取得重要进展。该团队郭国平教授、李海欧教授等人与中科院物理所张建军研究员、纽约州立大学布法罗分校胡学东教授以及本源量子计算有限公司合作,在硅基锗空穴量子点中实现了自旋轨道耦合强度的高效调控,为该体系实现自旋轨道开关以及提升自旋量子比特的品质

中国科大研究成功新型量子比特编码

  中国科学技术大学教授、中国科学院院士郭光灿领导的中科院量子信息重点实验室在新型量子比特编码方面取得新进展。该实验室郭国平研究组及合作者首次在砷化镓半导体量子芯片中成功实现量子相干特性好、操控速度快、可控性强的电控新型编码量子比特,研究成果发表在2月25日出版的《物理评论快报》上。  与现代计算机

“混血”纳米设备可控制量子比特自旋

  美国科学家使用其研发的独特的金属—半导体“混血”纳米设备,演示了一种新的光和物质的相互作用,且在仅为几纳米的胶体纳米结构中首次实现了对量子比特自旋进行完全的量子控制,这些新进展朝着制造出量子计算机迈开了更加关键的一步。该研究成果发表在7月1日的《自然》杂志上。   马里兰大学纳

半导体量子芯片开发获重要进展

  “量子芯片”是未来量子计算机的“大脑”。中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室郭国平研究组,在量子芯片开发领域的一项重要进展,首次在砷化镓半导体量子芯片中成功实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特。该成果近日在国际权威杂志《物理评论快报》发表。   郭

突破!Nature发布量子计算重磅论文

近日,Nature一下刊登了三篇关于硅基量子计算重大突破的论文,并且联合作为当期封面,甚是罕见。    研究人员首次完成了硅基量子计算两比特门保真度超99%的突破,也就是说,每100次操作发生的错误少于一次。至关重要的是,所有三项研究都超过了这个关键阈值。它使基于硅量子位的量子计算机成为一个可行

溶液内“操控”量子自旋?中国科学家率先做到!

量子,来源于拉丁语的quantus,意为“有多少”。一个物理量如果有最小的单元而不可连续的分割,就说这个物理量是量子化的。通俗来说,量子是能表现出某物质或物理量特性的最小单元。 自普朗克提出这一概念以来,绝大多数物理学家将量子力学视为理解和描述自然的基本理论,量子也因其“神秘性”成为微观世界探索