Antpedia LOGO WIKI资讯

实验室元素测定分析方法原子吸收法的理想分析条件

一、理想的分析条件1、溶液中总盐量低于待分析物1%。2、溶液中只有一个元素。3、溶液的物理性质(黏度等)与其水溶液一致。4、待分析物的浓度对应的吸收值的相对误差接近零。5、火焰温度足以分离所有待测组分,无需电离。6、可以使用计量化学或贫燃火焰,以避免燃烧头狭缝处积碳。7、使用主灵敏线进行测定绘制的标准曲线的斜率是最合适的。8、空心阴极灯的发射强度使得它在低电流下能量足够高,这不仅可以增加灯的寿命,还使大多数元素的灵敏度有所提高。9、使用低的负高压或增益,以获得良好的信噪比,降低检出限。10、消解和稀释时使用高纯试剂。然而在实际工作中,上述十个理想条件不可能完全实现,尽管我们已经很清楚这些都是理想条件,可我们的工作是现实,这只是理想状况,现实和理想还是有差距的。因此,我们分析人员必须在建立分析方法时,选择仪器条件、样品制备、及整个分析过程中都需要综合考虑这些因素,以此找出最佳的实验条件。二、选择和优化仪器条件1、谱线的选择。我们的......阅读全文

实验室元素测定分析方法--原子吸收法的理想分析条件

一、理想的分析条件1、溶液中总盐量低于待分析物1%。2、溶液中只有一个元素。3、溶液的物理性质(黏度等)与其水溶液一致。4、待分析物的浓度对应的吸收值的相对误差接近零。5、火焰温度足以分离所有待测组分,无需电离。6、可以使用计量化学或贫燃火焰,以避免燃烧头狭缝处积碳。7、使用主灵敏线进行测定绘制的标

实验室元素测定分析方法--原子吸收间接分析法

间接原子吸收光谱分析法(indirect atomic absorption spectrometry,IAAS)是指被测元素或组分本身并不直接被测定或不能直接被测定,利用它与可方便测定的元素发生化学反应,然后测定反应产物中或未反应的过量的可方便测定的元素含量。1968年,G.D. Christia

原子吸收法的十大理想分析条件

起火焰原子吸收法,大家都很熟悉,也许大家平常一直在使用火焰原子吸收,但是,不知道同仁们是否考虑过哪些条件是火焰原子吸收光谱法的理想分析条件呢?我们又需要如何选择和优化仪器条件?火焰AAS都存在哪些干扰?等等,我在此做了初步的讨论,顺便总结了一下,希望对大家有帮助,也希望大家交流互动,最终达到共同提高

原子吸收光谱分析测定条件分析

1、分析线选择  通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。2、狭缝宽度选择  狭缝宽度影响光谱通带宽度与检测器接受

实验室元素测定分析方法--稀释法

这个方法实质上是标准加入法的另一种形式。设标准溶液的浓度为Cs,测得的吸收值为As。现往一份体积为Vs的标准溶液中加入浓度为Cx的样品溶液Vs,测得混合物的吸收信号为Am,则Cx可按下式求得:若两次测量都很准确,则这一方法是快速而易行的实用方法。这个方法需用的样品溶液的体积比标准加入法少,因为无需单

实验室元素测定分析方法--内标法

标准曲线法使用的标准溶液,底液通常是酸性水溶液,但是如果试样和标样在黏度、表面张力、密度等性质上有较大差别时,且有时候试样有复杂的基体组成或存在化学干扰,要求标样与试样有相似的组成,经常是难以达到的,这样标准曲线法就存在较大的误差。内标法是在标准溶液和被测样品中分别加入第三元素内标元素,测定分析线和

原子吸收AAS--元素分析方法--铍Be

原子吸收AAS--元素分析方法--铍Be1. 基本特性:   原子量 9.0122   电离电位 9.3 (ev)   离解能 4.6 (ev)2. 样品处理:   HCL; HNO3; HCL+H2O2; HCLO4+HNO3+HF;   KOH; Na2CO3+H3BO3; H3PO4.3. 分

原子吸收AAS--元素分析方法--砷As

1. 基本特性:   原子量 74.922   电离电位 9.8 (ev)   离解能 4.9 (ev)2. 样品处理:   HNO3+H2SO4; HNO3+HF;HNO3+H2SO4+HCLO4;   HBF4+HNO3+H2O(2:3:5);Na2O2+Na2CO3;KNO3;  Na2CO3

原子吸收AAS--元素分析方法--铟In

1. 基本特性:   原子量 114.82   电离电位 5.8 (ev)   离解能 1.1 (ev)2. 样品处理:   HNO3+HF; HCL+H2SO4; HCL+H2SO4+HNO3;3. 分析条件   分析线: 303.9 nm   狭缝: 0.4 nm (火焰)         2.

原子吸收AAS--元素分析方法--铟In

原子吸收AAS--元素分析方法--铟In1. 基本特性:   原子量 114.82   电离电位 5.8 (ev)   离解能 1.1 (ev)2. 样品处理:   HNO3+HF; HCL+H2SO4; HCL+H2SO4+HNO3;3. 分析条件   分析线: 303.9 nm   狭缝: 0.

原子吸收AAS--元素分析方法--铍Be

1. 基本特性:   原子量 9.0122   电离电位 9.3 (ev)   离解能 4.6 (ev)2. 样品处理:   HCL; HNO3; HCL+H2O2; HCLO4+HNO3+HF;   KOH; Na2CO3+H3BO3; H3PO4.3. 分析条件   分析线 234.9 nm  

原子吸收AAS--元素分析方法--砷As

原子吸收AAS--元素分析方法--砷As1. 基本特性:   原子量 74.922   电离电位 9.8 (ev)   离解能 4.9 (ev)2. 样品处理:   HNO3+H2SO4; HNO3+HF;HNO3+H2SO4+HCLO4;   HBF4+HNO3+H2O(2:3:5);Na2O2+

实验室原子吸收光谱分析步骤--原子吸收光谱测定的条件

一、分析线的选择一般选用灵敏线或干扰小的谱线。含量较高,可选择次灵敏线,如Cu 327.4nm、Na 589.5nm、K766.9nm、Pb一般不用217.0nm线因它与Sb 217.6nm线可能重叠,选分析线必须避免谱线重叠,如Fe 248.3nm线与Pt 247.6n线可能重叠,Au 242.8

实验室元素测定分析方法--内插法

此法可以提高对高含量元素测定的准确度。这种方法只需两个标准点即可,这两个标准点的浓度与试样溶液的浓度应该十分接近,其中一个高于试样溶液浓度,另一个低于试样溶液的浓度,以使试样的测量值位于两个标准点测量值之间。采用紧密内插法可按下式计算分析结果。式中,C1,C2,Cx分别为标准溶液1、标准溶液2和试样

实验室元素测定分析方法--标准加入法

为了减少试液与标准溶液之间的差异(如基体、黏度等)引起的误差,可采用标准加入法来进行定量分析,这种方法又称为“直线外推法”或“增量法”。当样品中基体不明或基体浓度很高,很难配制相类似的标准溶液时,使用标准加入法较好。分取几份等量的被测试样,其中一份不加入被测元素,其余各份试样中分别加入不同已知量C1

实验室元素测定分析方法--标准曲线法

标准曲线法(standard curve method),又称校正曲线法,是用标准物质配制标准系列,在标准条件下,测定各标准样品的吸光度值Ai;以吸光度值Ai,(i=1,2,3,…)对被测元素的含量Ci(i=1,2,3,…)建立校正曲线A=f(c),在同样条件下,测定样品的吸光度值Ax,根据被测元素

原子吸收AAS--元素分析方法--铷Rb

1. 基本特性:   原子量 85.47   电离电位 4.177 (ev)   离解能 3.6 (ev)2. 样品处理:   HF+HNO3; HF+H2SO4; HCLO4+HF; HCLO4.3. 分析条件   分析线 780.0 nm   狭缝 0.4 nm   空心阴极灯电流(w) 2.0

原子吸收AAS--元素分析方法--锰Mn

锰1. 基本特性:   原子量 54.938   电离电位 7.4 (ev)   离解能 4.2 (ev)2. 样品处理:   HCL; HCL+HCLO4; HCL+HNO3; HF; HNO3; LiBO2; Na2CO33. 分析条件   分析线 279.5 nm   狭缝 0.2 nm  

原子吸收AAS--元素分析方法--银Ag

原子吸收AAS--元素分析方法--银Ag1. 基本特性:         原子量:107.868   电离电位:7.576 (ev)    离解能:1.4 (ev)2. 样品处理:         HNO3+HCL; HNO3+H2SO4; HF+HCLO4+HNO3+HCL;  HNO3+H2O2

原子吸收AAS--元素分析方法--银Ag

1. 基本特性:         原子量:107.868   电离电位:7.576 (ev)    离解能:1.4 (ev)2. 样品处理:         HNO3+HCL; HNO3+H2SO4; HF+HCLO4+HNO3+HCL;  HNO3+H2O2.3. 分析条件:        分析线

原子吸收AAS--元素分析方法--钛Ti

1. 基本特性:   原子量 47.90   电离电位 6.8 (ev)   离解能 6.8 (ev)2. 样品处理:   HCL; HNO3; HF; HF+HCL; HF+HCLO4; HNO3+HCL;Na2CO3+Na2O2; Na2CO3+Na2B4O7; Li2CO3+HBO3.3. 分

原子吸收AAS--元素分析方法--硼B

1. 基本特性:原子量10.81电离电位9.3 (ev)离解能8.1(ev)2. 样品处理:     HNO3+HCLO4; HNO3+H2SO4; H2SO4+H2O23. 分析条件   分析线 249.7 nm   狭缝 0.4 nm   空心阴极灯电流(w) 2.5 mA4. 干扰:   光谱

原子吸收AAS--元素分析方法--钒V

1. 基本特性:   原子量 50.942   电离电位 6.74 (ev)   离解能 6.4 (ev)2. 样品处理:   HCL; HNO3; HF; H2SO4; HNO3+HCL; H2SO4+H3PO4;HF+HBO3; HNO3+HF+HCLO4; H2SO4+H3PO4+HCLO4;

原子吸收AAS--元素分析方法--镁Mg

原子吸收AAS--元素分析方法--镁Mg1. 基本特性:   原子量 24.31   电离电位 7.6 (ev)   离解能 3.9 (ev)2. 样品处理:   HF+H2SO4; NaBO2.3. 分析条件   分析线 285.2 nm   狭缝 0.4 nm   空心阴极灯电流(w) 0.1

原子吸收AAS--元素分析方法--钡Ba

原子吸收AAS--元素分析方法--钡Ba1. 基本特性:     原子量: 137.34      电离电位: 5.2(ev)      离解能: 5.9(ev)2. 样品处理:    HF+HCLO4; HF+HNO3; Na2CO3; LiBO2.3. 分析条件:   分析线: 553.6 nm

原子吸收AAS--元素分析方法--铑Rh

原子吸收AAS--元素分析方法--铑Rh1. 基本特性:   原子量 102.905   电离电位 7.5 (ev)   离解能 4.4 (ev)2. 样品处理:   HNO3+HCL; Na2O2; KOH+K2CO3.3. 分析条件   分析线 343.5 nm   狭缝 0.2 nm   空心

原子吸收AAS--元素分析方法--汞Hg

原子吸收AAS--元素分析方法--汞Hg1. 基本特性:   原子量 200.59   电离电位 10.4 (ev)   离解能 (ev)2. 样品处理:   HCL+HNO3; HNO3+HF; HNO3+H2SO4; KMnO4+H2SO4;   KMnO4+HCLO4;3. 分析条件   分析

原子吸收AAS--元素分析方法--金Au

1. 基本特性:   原子量 196.967   电离电位 9.2 (ev)   离解能 (ev)2. 样品处理:   3HCL+HNO33. 分析条件:   分析线 242.8 nm   狭缝 0.4 nm   空心阴极灯电流(w) 2.0 mA4. 干扰:   光谱干扰:       元素   

原子吸收AAS--元素分析方法--铊Tl

1. 基本特性:   原子量 204.37   电离电位 6.108 (ev)   离解能 < 3.9 (ev)2. 样品处理:   HNO3; HNO3+HF; HNO3+H2SO4+HCLO4.3. 分析条件   分析线 276.8 nm   狭缝 0.4 nm (火焰)        2.0

原子吸收AAS--元素分析方法--钴Co

1. 基本特性:   原子量 58.93   电离电位 7.9 (ev)   离解能 3.7 (ev)2. 样品处理:   HNO3; HCL+HNO3; HCL+HNO3+H2SO4; HF+HSO4; HF+H2SO4;   H2SO4+HCLO4+HNO3.3. 分析条件:   分析线 240