原子吸收分析法中化学干扰分类

干扰的主要情况可分为难解离化合物生成和阴离子干扰两种。首先,待测元素与其他组分反应生成难解离的稳定化合物,该反应发生于溶液中,会使溶液中的游离基态原子浓度降低,从而影响所测元素的吸光度。有些物质在火焰的作用下,会形成难溶的氧化物、碳化物等物质,也会造成参与吸收辐射光的基态原子数减少,吸光度降低。其次,阴离子的存在会对火焰中的金属原子产生影响,进而影响所测元素的原子化。......阅读全文

原子吸收分析法在中水处理中的应用

 我国经济建设的发展,在带动工业生产的同时,也对环境造成了一定的危害。工业生产中的废水、居民的生活污水以及地 面水等都对生态环境造成了极大的污染,对人们的生存环境造成严重威胁。此外,大量污水废水的排放也消耗了水资源,在 水资源日益紧缺的形势下,应该加强资源的回收利用。利用原子吸收分析法对废水和污水等

原子吸收分析法在中水处理中的应用

  我国经济建设的发展,在带动工业生产的同时,也对环境造成了一定的危害。工业生产中的废水、居民的生活污水以及地 面水等都对生态环境造成了极大的污染,对人们的生存环境造成严重威胁。此外,大量污水废水的排放也消耗了水资源,在全球 水资源日益紧缺的形势下,应该加强资源的回收利用。利用原子吸收分析法对废水和

原子吸收分析法在中水处理中的应用

我国经济建设的发展,在带动工业生产的同时,也对环境造成了一定的危害。工业生产中的废水、居民的生活污水以及地 面水等都对生态环境造成了极大的污染,对人们的生存环境造成严重威胁。此外,大量污水废水的排放也消耗了水资源,在 水资源日益紧缺的形势下,应该加强资源的回收利用。利用原子吸收分析法对废水和污水等进

原子吸收中有哪些干扰因素

原子吸收光谱是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业.吸收原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法.既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的cr、ni、cu、mn、mo、ca、mg、als、cd、pb、ad

原子吸收中有哪些干扰因素

原子吸收光谱是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业.吸收原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法.既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的cr、ni、cu、mn、mo、ca、mg、als、cd、pb、ad

原子吸收分光光度法化学干扰及消除

  待测元素不能从它的化合物中全部离解出来或与共存组分生成难离解的化合物氧化物、氮化物、氢氧化物、碳化物等。  抑制方法:  ①加释放剂 与干扰组分形成更稳定的或更难挥发的化合物,使待测元素释放出来  (如:La、Sr、Mg、Ca、Ba 等的盐类及 EDTA 等)  例如:PO43 -干扰 Ca 的

原子吸收分析法的原理

  原子吸收的是从空心阴极灯打来的光,一个灯对应一种元素。所以原子吸收只能一次测一种元素,换个灯再测另一种。  之所以要这么干,只是因为现在的科技,做不出连续光谱的强光源。现在的连续光源一般是钨灯(可见光谱)和氘灯(紫外光谱),用于分子吸收是足够了。这些连续光源远远达不到把足够的气化后的原子激发到激

原子吸收光谱分析中的干扰及消除

虽然原子吸收分析中的干扰比较少,并且容易克服,但在许多情况下是不容忽视的。为了得到正确的分析结果,了解干扰的来源和消除是非常重要的。1物理干扰及其消除方法物理干扰是指试样左转移,蒸发和原子化过程中,由于试样任何物理性质的变化而引起的原子吸收信号强度变化的效应。物理干扰属非选择性干扰。1.1物理干扰产

原子吸收光谱分析中的干扰及消除

虽然原子吸收分析中的干扰比较少,并且容易克服,但在许多情况下是不容忽视的。为了得到正确的分析结果,了解干扰的来源和消除是非常重要的。1 物理干扰及其消除方法物理干扰是指试样左转移,蒸发和原子化过程中,由于试样任何物理性质的变化而引起的原子吸收信号强度变化的效应。物理干扰属非选择性干扰。1.1物理干扰

浅谈原子吸收光谱仪分析中的干扰效

  原子吸收光谱可测定多种元素,火焰原子吸收光谱法可测到10-9g/mL数量级,石墨炉原子吸收法可测到10-13g/mL数量级。其氢化物发生器可对8种挥发性元素汞、砷、铅、硒、锡、碲、锑、锗等进行微痕量测定。  一、干扰效应    原子吸收光谱分析中,干扰效应按其性质和产生的原因,可以分为四类:  

冷原子吸收法测定样本中汞含量的干扰因素

碘离子浓度高于或等于3.8 mg/L时,明显影响高锰钾酸钾-过硫酸钾消解法的回收率与精密度。当阴离子洗涤剂浓度高于或等于0.1 mg/L时,采用溴酸钾-溴化钾消解法,汞的回收率小于67.7%。若有机物含量较高,规定的消解试剂最大用量不足以氧化样品中有机物时,则本法不适用。

原子吸收分析中存在的干扰及其消除或抑制方法

原子吸收分析中存在的干扰及其消除或抑制方法  原子吸收分析中常常遇到的干扰有物理干扰和化学干扰。其次是光谱干扰和电离干扰。  1 物理干扰  物理干扰是指试样在转移、蒸发和原子化过程中,由于试样任何物理性质的变化而引起的原子吸收信号强度变化的效应。物理干扰属非选择性干扰。  为消除物理干扰,保证分析

关于原子吸收光谱法的化学干扰及其抑制介绍

  原子吸收光谱法的化学干扰及其抑制:化学干扰是指待测元素在分析过程中与干扰元素发生化学反应,生成了更稳定的化合物,从而降低了待测元素化合物的解离及原子化效果,使测定结果偏低。这种干扰具有选择性,它对试样中各种元素的影响各不相同。化学干扰的机理很复杂,  消除或抑制其化学干扰应该根据具体情况采取以下

原子吸收法中干扰效应比原子发射光谱法要小

  总的来说,原子吸收法中干扰效应比原子发射光谱法要小得多,原因如下:  ①.AAS法中使用锐线光源,应用的是共振吸收线,而吸收线的数目比发射线少得多,光谱重叠的几率小,光谱干扰少;  ②.AAS法中,涉及的是基态原子,故受火焰温度的影响小。但在实际工作中,干扰仍不能忽视,要了解其产生的原因及消除办

​原子吸收光谱分析法在金属化学形态分析中的应用

原子吸收光谱分析法在金属化学形态分析中的应用:  通过气相色谱和液体色谱分离然后以原子吸收光谱加以测定,可以分析同种金属元素的不同有机化合物。例如汽油中5种烷基铅,大气中的5种烷基铅、烷基硒、烷基胂、烷基锡,水体中的烷基胂、烷基铅、烷基揭、烷基汞、有机铬,生物中的烷基铅、烷基汞、有机锌、有机铜等多种

​原子吸收光谱分析法在金属化学形态分析中的应用

原子吸收光谱分析法在金属化学形态分析中的应用:  通过气相色谱和液体色谱分离然后以原子吸收光谱加以测定,可以分析同种金属元素的不同有机化合物。例如汽油中5种烷基铅,大气中的5种烷基铅、烷基硒、烷基胂、烷基锡,水体中的烷基胂、烷基铅、烷基揭、烷基汞、有机铬,生物中的烷基铅、烷基汞、有机锌、有机铜等多种

实验室光谱仪器原子吸收的干扰分类及消除办法

    原子吸收光谱分析的干扰通常有5种类型:化学干扰、物理干扰、电离干扰、光谱干扰及背景干扰等。(1)化学干扰化学干扰是原子吸收光谱分析中经常遇到的。产生化学干扰的主要原因是被测元素形成稳定或难熔的化合物不能完全离解出来所致。它又分为阳离子干扰和阴离子干扰。在阳离子干扰中,有很大一部分是属于被测元

原子吸收光谱的干扰与消除

  1、物理干扰:蒸汽雾滴大小  2、化学干扰:分子蒸发(待测原子在灰化阶段损失了)、形成难解离的化合物(氧化物、碳化物、磷化物):高温原子化,加入释放剂,加入保护剂,加入基体改进剂  3、电离干扰:被测元素在原子化过程发生电离(加入消电离剂)  4、光谱干扰:吸收线重叠、光谱通带内存在非吸收线、原

原子吸收法主要有哪些干扰

【答案】:(1)光谱干扰。非共振线的干扰:测定的共振线附近有非共振线存在,减小单色器出射狭缝宽度可改善或消除这种干扰。空心阴极灯的发射干扰:灯内材料杂质发射谱线不能被单色器分开而被吸收,采用纯度较高的单元素灯,可减免这种干扰。分子光谱的干扰:氘灯扣背景,背景吸收可利用氘灯发射的连续光源作背景校正来扣

原子吸收光谱分析中的物理干扰产生原因

在火焰原子吸收中,试样溶液的性质发生任何变化,都直接或间接影响原子化各级效率。如试样的黏度发生变化,则影响吸喷速率进而影响雾量和雾化效率。若标样的黏度比试样小,分析结果误差是负的。当试样中存在大量基体元素时,在蒸发解离过程中饭不仅消耗大量热量,还可能包裹待测元素,延缓待测元素的蒸发,影响原子化效率。

原子吸收光谱分析中的干扰及其解决方法

  ▲ 物理干扰:来自样品的流体特性:如黏度、表面张力等  来源:样品的流体特性,如黏度、表面张力等  解决方法:  火焰:加大稀释倍数 (10~50倍)  火焰法测定有机溶剂灵敏度大于无机水溶液(2 ~2.5倍)。有机溶液密度、黏度和表面张力一般较无机酸小,样品提升速率和雾化效率都更大。  石墨炉

原子吸收光谱仪运行中四大干扰效应

原子吸收光谱仪是一种常用的分析仪器,可测定多种元素,火焰原子吸收光谱法可测到10-9g/mL数量级,石墨炉原子吸收法可测到10-13g/mL数量级。今天我们就来具体介绍一下原子吸收光谱仪运行中四大干扰效应,希望可以帮助用户更好的应用产品。一、干扰效应原子吸收光谱分析中,干扰效应按其性质和产生的原因,

原子吸收光谱仪运行中四大干扰效应

  原子吸收光谱仪是一种常用的分析仪器,可测定多种元素,火焰原子吸收光谱法可测到10-9g/mL数量级,石墨炉原子吸收法可测到10-13g/mL数量级。今天我们就来具体介绍一下原子吸收光谱仪运行中四大干扰效应,希望可以帮助用户更好的应用产品。一、干扰效应原子吸收光谱分析中,干扰效应按其性质和产生的原

原子吸收光谱法中的背景干扰是怎么产生的

原子吸收光谱分析中的背景干扰主要是原子化过程中产生的分子吸收和固体微粒产生的光散射产生的干扰效应。背景干扰往往使吸光度增大,产生正误差。原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子

原子吸收光谱法中的背景干扰是怎么产生的

原子吸收光谱分析中的背景干扰主要是指原子化过程中产生的分子吸收和固体微粒产生的光散射产生的干扰效应。背景干扰往往使吸光度增大,产生正误差。 光谱背景干扰的抑制和校正 a.光谱背景干扰的抑制 在实际工作中,多采用改变火焰类型、燃助比和调节火焰观测区高度来抑制分子吸收干扰;在石墨炉原子吸收光谱分析中

原子吸收分析中四大干扰的原因和消除办法

定义:试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、进样量、雾化效率、原子化效率、雾滴大小等。因素:溶液的粘度、表面张力、密度、溶剂的蒸汽压和雾化气体的压力等。特点:物理干扰是非选择性干扰,对各种元素影响基本相同。消除方法:1)  配置相似组成的标准样品,采用标准加入

原子吸收分析中四大干扰的原因和消除办法

定义:试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、进样量、雾化效率、原子化效率、雾滴大小等。因素:溶液的粘度、表面张力、密度、溶剂的蒸汽压和雾化气体的压力等。特点:物理干扰是非选择性干扰,对各种元素影响基本相同。消除方法:1) 配置相似组成的标准样品,采用标准加入法

原子吸收光谱法中的背景干扰是怎么产生的

原子吸收光谱分析中的背景干扰主要是指原子化过程中产生的分子吸收和固体微粒产生的光散射产生的干扰效应。背景干扰往往使吸光度增大,产生正误差。光谱背景干扰的抑制和校正a.光谱背景干扰的抑制 在实际工作中,多采用改变火焰类型、燃助比和调节火焰观测区高度来抑制分子吸收干扰;在石墨炉原子吸收光谱分析中,常选用

原子吸收分析法的原理是什么

  原子吸收的是从空心阴极灯打来的光,一个灯对应一种元素。所以原子吸收只能一次测一种元素,换个灯再测另一种。  之所以要这么干,只是因为现在的科技,做不出连续光谱的强光源。现在的连续光源一般是钨灯(可见光谱)和氘灯(紫外光谱),用于分子吸收是足够了。这些连续光源远远达不到把足够的气化后的原子激发到激

原子吸收光谱法背景吸收干扰和消除方法

背景是一种非原子吸收现象,多数人认为主要来自:(1)光散射(微固体颗粒引起) 火焰中的气溶胶固体微粒存在,会使入射光发生散射,产生高于真实值的假吸收,使结果偏高。(2)分子吸收 分子吸收是指在原子化过程中生成的气体分子、氧化物及盐类分子对辐第三射吸收而引起的干扰,包括火焰的成分,如OH、CH、NH、