高速3D激光共聚焦显微镜的发展和应用
激光扫描共聚焦显微镜(CLSM)的原理最早是在1957年,由M.Minsky 在哈佛大学研究期间提出的,在此成像系统中,采用点光源照明样品,而携带样品信息的光被点探测器手机,最后利用横向和轴向扫描技术获得整个样品的三维信息。 目前市场上共聚焦显微镜主要被几个大牌子所垄断,与市场上动辄十几万美金的激光共聚焦显微镜相比,NS3600的设计初衷就是在保证世界一流水平共聚焦显微镜的同时兼顾经济性。与传统的探针型轮廓测量仪相比NS3600以638nm激光作为光源,同时采用连续断层摄影的方式,获得一张张连续的光学切片,并用特殊的算法这些光学切片重新构建成一张3维立体图像,最后用NSViewer数据分析软件可以很轻松地获得样品地长,宽,高以及粗糙度信息。由于NS3600采用的是无接触测量方式,因此测量地同时不会损伤样品的表面,也不需要准备专门的样品,直接放在空气中就可以测量非常简单快捷。......阅读全文
高速3D激光共聚焦显微镜的发展和应用
激光扫描共聚焦显微镜(CLSM)的原理最早是在1957年,由M.Minsky 在哈佛大学研究期间提出的,在此成像系统中,采用点光源照明样品,而携带样品信息的光被点探测器手机,最后利用横向和轴向扫描技术获得整个样品的三维信息。 目前市场上共聚焦显微镜主要被几个大牌子所垄断,与市场上动辄十几万美金
高速逆流色谱的应用与发展
从重液滴通过另一液体滴落,溶质在两相中间实现分配的原理出发,进行设备与过程的研发转变,20世纪60年代发明了连续液/液的高速逆流色谱(High-speed Countercurrent Chromatography,HSCCC)技术,目前已广泛应用于生物、医药、天然产物、环境分析、食品等领域的分离、
高速逆流色谱的应用与发展
从重液滴通过另一液体滴落,溶质在两相中间实现分配的原理出发,进行设备与过程的研发转变,20世纪60年代发明了连续液/液的高速逆流色谱(High-speed Countercurrent Chromatography,HSCCC)技术,目前已广泛应用于生物、医药、天然产物、环境分析、食品等领域的分离、
高速逆流色谱的发展史及应用领域
发展史 1.20世纪70年代,出现了液滴逆流色谱(DCCC) 特点: (1)流体静力学原理(Hydrostatic equilibrium system,HSES) (2)分离时间过长、连接处容易出现渗漏等 2.20世纪70年代出现了离心分配色谱仪(Centrifugal partit
请问激光共聚焦显微镜的应用领域和范围
共聚焦显微镜的光源一般分为激光和白光(Led)两种,当然他们各自的应用范畴也不尽相同。笼统的区分可以分为生物和工业两种大类应用,下面为大家列举一款共聚焦显微镜作示例。德国NanoFocus共聚焦显微镜应用范畴:材料(层压材料、陶瓷、新材料、轻质结构);机械加工(切割/铣削刀具、剃刀、砂纸、涂料、微型
市场分析:我国3D生物打印的应用与发展
从上世纪90年代初开始,我国便在国家自然科学基金委和国家科技部的支持下开始了3D打印的研究。在科技部多个五年计划的持续支持下,华中科技大学、西安交通大学、清华大学、北京航空航天大学、西北工业大学等一批科研院所开展了几乎所有主流的3D打印技术研究。但国内从事3D打印技术研发的科研团
血凝仪的发展和应用
血凝仪的发展较生化分析仪为短,70年代凝血因子的活性检测方法问世,80年代发色底物技术的广泛运用使抗凝、纤溶的检测成为可能,近年来,血凝仪普遍安装了免疫比浊技术通道及软件,结果使血栓与止血的自动化检测日臻完善;同时由于全自动血凝仪检测的快速、简便、结果准确及精密度高等特点,极大地提高了检测的速度
高速逆流色谱的发展历程
高速逆流色谱是在1982年,美国国立卫生院的一个教授首先研究和发展起来的一种不同于传统液相色谱法的现代色谱分离制备技术。作为一种新的色谱技术,HSCCC分离系统可以理解为以螺旋管式离心分离仪代替HPLC的柱色谱系统。HSCCC不使用固相载体作固定相, 克服了固相载体带来的样品吸附、损失、污染和峰
高速逆流色谱的发展历史
1.20世纪70年代,出现了液滴逆流色谱(DCCC) 特点: (1)流体静力学原理(Hydrostatic equilibrium system,HSES) (2)分离时间过长、连接处容易出现渗漏等 2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition c
高速逆流色谱的研究发展
溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。三相溶剂还只用于标准品混合物的
高速3D生物打印机面世
澳大利亚墨尔本大学科学家研制出一款新型高速3D打印机。这款先进的生物打印机利用“动态界面打印”技术,巧妙借助声波,能在几秒内快速精准构建并打印出3D细胞结构。相关论文发表于新一期《自然》杂志。 研究人员表示,这项技术为癌症研究提供了一种精准复制特定人体器官和组织的利器,将极大提升预测和开发新型药物
高速3D生物打印机面世
澳大利亚墨尔本大学科学家研制出一款新型高速3D打印机。这款先进的生物打印机利用“动态界面打印”技术,巧妙借助声波,能在几秒内快速精准构建并打印出3D细胞结构。相关论文发表于新一期《自然》杂志。研究人员表示,这项技术为癌症研究提供了一种精准复制特定人体器官和组织的利器,将极大提升预测和开发新型药物疗法
发展中国太赫兹高速通信技术与应用的思考(一)
摘要:太赫兹通信是未来移动通信(Beyond 5G)中极具优势的技术途径,也是空间信息网络高速传输的重要技术手段,具有军民融合、协同发展的应用前景。中国太赫兹高速无线通信关键技术已经取得了重要突破,与世界技术水平基本同步。因此,进一步加大力度发展太赫兹高速通信技术,对于中国引领国际高速无线通信技
发展中国太赫兹高速通信技术与应用的思考(二)
2015 年,加利福尼亚大学设计了一个非相干的140 GHz 收发器和一个采用65 nm 互补金属氧化物半导体(CMOS)技术的太赫兹发生器,集成了数据速率为2.5 Gbit/s 的太赫兹通信系统[11]。同年,加州大学伯克利分校采用65 nm CMOS 技术设计了一个240 GHz 的收发系统,实
J型高速逆流色谱仪的演进和发展(一)
一、综述J型高速逆流色谱仪采用多层缠绕分离柱通过行星式公转+自转产生的离心力以及不同物质在上下两相溶剂中的溶解度差等因素实现物质的分离。高速逆流色谱技术相比传统的分离纯化手段的优点在于较高的分离效率和较大的制备量以及溶剂使用成本的降低。J型高速逆流色谱仪内部核心部件组成包括至少一个分离柱,一个公转轴
J型高速逆流色谱仪的演进和发展(二)
2.2.1 解绕轴传统解绕方法是采用PTFE软管加解绕轴进行连接的,基本原理如下所示:如图,箭头指示为分离柱旋转方向,其搭配一个转速相同但与其反向旋转的解绕轴来完成红色管路的解绕。在运行过程中,由于转速相同但转向相反,所以红色管路不会因为转动而缠绕折损,最后解绕轴与中心轴组成最后一个解绕管路,将管路
J型高速逆流色谱仪的演进和发展(三)
2.4.2 压缩机空调直冷压缩机空调直冷的方法是将主机部分更改为开放式结构,完全与机器内部连通;并在机器外壳挂装工业级控温空调系统,直接对机器内部空间进行控制,从而最终实现主机温度恒定。主机温度的控制最后都需要空气作为介质作用于分离柱,压缩机空调直冷无论从温度改变速度上和能力上都要强于温控水浴(水浴
高速逆流色谱研究发展
高速逆流色谱研究发展:溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。三相溶剂还只
新型高速微尺度3D打印技术面世,有望促进生物医学等领域发展
美国斯坦福大学科学家开发出一种新型高速微尺度3D打印技术——卷对卷连续液体界面生产(r2rCLIP),其每天可打印100万个极其精细且可定制的微型颗粒。这一成果有望促进生物医学等领域的发展,相关论文13日发表在最新一期的《自然》杂志上。 新技术打印出的大量精微颗粒。 图片来源:斯坦福大学
奥林巴斯-FV3000RSBX-高速激光共聚焦显微镜
仪器名称:奥林巴斯FV3000RS-BX高速激光共聚焦显微镜仪器编号:21017660产地:日本生产厂家:OLYMPUS型号:FV3000RS-BX出厂日期:购置日期:2021-09-03样品要求:样品为玻片、细胞皿或多孔板。使用仪器前,请保持样品清洁;使用仪器时,请脱下手套。预约说明:麦戈文FV3
水处理药剂的应用和发展
水处理剂是工业用水、生活用水、废水处理过程中必需的化学药剂,通过使用这些化学药剂,可使水达到一定的质量要求。它的主要作用是控制水垢和污泥的形成、减少泡沫、减少与水接触的材料腐蚀、除去水中的悬浮固体和有毒物质、除臭脱色、软化水质等。目前由于世界各国用水量急剧增加,同时各种环保法规(水净化法)相继制定
生物酶的发展和应用
生物酶是一种无毒、对环境友好的生物催化剂,其化学本质为蛋白质。酶的生产和应用,在国内外已具有80多年历史,进入20世纪80年代,生物工程作为一门新兴高新术在我国得到了迅速发展,酶的制造和应用领域逐渐扩大,酶在纺织工业中的应用也日臻成熟,由过去主要用于棉织物的退浆和蚕丝的脱胶,至现在在纺织染整的各领域
薄层层析的应用和发展
广泛应用于石油、化工、医药、生化等方面。样品用量一般为几至几百微克,是一种较实用、有效的微量分离分析方法。此法也可用于分离制备较大量的样品,即使用较大较厚的薄层板,将样品溶液在起始点处点成条带状,这样可以分离毫克量样品。
高速逆流色谱的技术发展及研究发展
技术发展 二十世纪六十年代,首先在日本,随后在美国国家医学研究院发现了一种有趣的现象:即互不相溶的两相溶剂在绕成螺旋形的小孔径管子里分段割据,并能实现两溶剂相之间的逆向对流。Ito及其后来者在此基础上研究并设计制造出了一系列逆流色谱装置,早期的是封闭型的螺旋管行星式离心分离仪CPC(coil
激光共聚焦显微镜技术的应用
最近需要做成骨细胞培养的实验,师兄给个建议,说是可以做激光共聚焦显微镜 检测。关于这个我还真不知道该如何下手设计这个实验,网上搜集了一些资料,分享给大家,供参考。激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM )是20世纪80年代发展起来的一项具
新型高速微尺度3D打印技术面世
原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519143.shtm
高速逆流色谱的发展趋势
为了克服HSCCC理论研究相对滞后的不足,有不少研究人员正从事理论研究,试图建立完善的理论基础来指导溶剂体系的选择,以期使HSCCC尽快从一种分离技术发展成为一门分离科学。HSCCC一种独特的不用固态载体的液液分配色谱技术,是一种能实现连续有效分离的实用分离制备技术,能采用多种多样的溶剂系统对任
高速逆流色谱的技术发展
二十世纪六十年代,首先在日本,随后在美国国家医学研究院发现了一种有趣的现象:即互不相溶的两相溶剂在绕成螺旋形的小孔径管子里分段割据,并能实现两溶剂相之间的逆向对流。Ito及其后来者在此基础上研究并设计制造出了一系列逆流色谱装置,早期的是封闭型的螺旋管行星式离心分离仪CPC(coil planet
高速逆流色谱的发展史
高速逆流色谱的发展史1.20世纪70年代,出现了液滴逆流色谱(DCCC)特点:(1)流体静力学原理(Hydrostatic equilibrium system,HSES)(2)分离时间过长、连接处容易出现渗漏等2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition c
高速台式离心机的使用方法和应用
高速台式离心机可广泛用于临床医学、生物化学、遗传工程、放射免疫学等领域,该离心机具有外型美观,运行平稳,噪音低,体积小,重量轻,操作简单,使用方便等特点,是科研院所,各大医院理想的实验仪器。使用方法:把需要分离的物质定量放入离心管,每支离心管所加物质重量必须相等。把离心管均匀插入离心头孔中,合上盖板