实验室分析方法原子发射光谱法分析过程

原子发射光谱分析的过程,一般有光谱的获得和光谱的分析两大过程。具体可分为:发射光谱分析是通过下列过程来完成的:(1)使试样在外界能量的作用下变成气态原子, 并使气态原子的外层电子激发至高能态。处于激发态的原子不稳定, 一般在10s后便跃迁到较低的能态,这时原子将释放出多余的能量而发射出特征的谱线。由于样品中含有不同的原子, 就会产生不同波长的电磁辐射。(2) 把所产生的辐射用棱镜或光栅等分光元件进行色散分光, 按波长顺序记录在感光板上, 可得有规则的谱线条即光谱图 (也可用目视法或光电法进行测量)。(3)检定光谱中元素的特征谱线的存在与否,可对试样进行定性分析; 进一步测量各特征谱线的强度可进行定量分析。......阅读全文

实验室分析方法原子发射光谱法分析过程

原子发射光谱分析的过程,一般有光谱的获得和光谱的分析两大过程。具体可分为:发射光谱分析是通过下列过程来完成的:(1)使试样在外界能量的作用下变成气态原子, 并使气态原子的外层电子激发至高能态。处于激发态的原子不稳定, 一般在10s后便跃迁到较低的能态,这时原子将释放出多余的能量而发射出特征的谱线。由

实验室分析方法原子发射光谱法

原子发射光谱法,是指利用被激发原子发出的辐射线形成的光谱与标准光谱比较,识别物质中含有何种物质的分析方法。用电弧、火花等为激发源,使气态原子或离子受激发后发射出紫外和可见区域的辐射。某种元素原子只能产生某些波长的谱线,根据光谱图中是否出现某些特征谱线,可判断是否存在某种元素。根据特征谱线的强度,可测

实验室分析方法原子发射光谱法的缺点

1. 在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。2. 含量(浓度)较大时,准确度较差。3. 只能用于元素分析,不能进行结构、形态的测定。4. 大多数非金属元素难以得到灵敏的光谱线。

实验室分析方法原子发射光谱法的优点

1. 多元素同时检出能力强可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。2. 分析速度快试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十个元

简述原子发射光谱法的分析过程

  原子发射光谱分析的过程,一般有光谱的获得和光谱的分析两大过程。具体可分为:  发射光谱分析是通过下列过程来完成的:  (1)使试样在外界能量的作用下变成气态原子, 并使气态原子的外层电子激发至高能态。处于激发态的原子不稳定, 一般在10s后便跃迁到较低的能态,这时原子将释放出多余的能量而发射出特

实验室分析方法原子发射光谱法的优缺点

优点1. 多元素同时检出能力强可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。2. 分析速度快试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十

实验室分析方法ICP-发射光谱法主要的过程

ICP发射光谱法包括了三个主要的过程,即:由 plasma 提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;用检测器检测光谱中谱线的波长和强度。由于待测元素原子的能级结构不同,因此发射谱线的特征不同, 据此可对

实验室分析方法ICP-发射光谱法的特点

1.因为 ICP 光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1 ~100ng/ml 。2.因为 ICP 光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在 1%以下,好时可在0.5%以下。3.因为

实验室分析方法原子荧光光谱法

原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。

原子发射光谱法

  许多的原子/离子在高温灼烧的时候,价层电子会被激发到高能级的轨道。由于不稳定,又会自动跃迁会低能级。在这个过程中,多余的能量会以光子的形式发射出来。由于不同原子/离子的价层电子所处能级不同,以及价层电子数量的区别,导致在灼烧的时候所发射出来的光线会有自己的独特性。  原子发射光谱法就是利用物质原

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子发射光谱法

  用高压放电、等离子焰炬、激光等手段可将原子或离子激活成激发态。激发态是不稳定的,容易发射出相应特征频率的光子返回到基态或低(亚)激发态而呈现一系列特征光谱线。这些特征光谱线经过光学色散系统分别被会聚在感光板上或被光电器件所接收,根据特征谱线的波长及强度对元素进行定性或定量分析,这便是原子发射光谱

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

关于环境分析方法——原子发射光谱法的介绍

  利用原子蒸汽在电或热的激发下产生的光谱,通过光谱仪照相记录或光量计直接读数的定量分析方法。主要特点是能一次同时测定多种金属元素,选择性好,干扰少,能直接分析液体和固体样品,适合于定性和多种元素定量分析。分析范围液体为毫克/升到微克/升,固体分析灵敏度为1%至0.001%。采用化学分离富集后再行测

原子发射光谱法的优缺点分析

原子发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。原子发射光谱法包括了三个主要的过程,即:   由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发而  产生光辐射;   将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;   用检

实验室分析方法原子荧光光谱法应用

测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度进行定量分析的方法。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则

实验室分析方法原子荧光光谱法介绍

原子荧光光谱法(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。它的基本原理是基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。

实验室分析方法原子荧光光谱法概论

原子荧光光谱法(atomic  fluorescence  spectrometry,AFS)是一种基于测量分析物气态自由原子吸收辐射被激发后去激发所发射的特征谱线强度进行定量分析的痕量元素分析方法。作为原子光谱分析法的一个重要分支,原子荧光光谱分析法历经40余年的不断完善和发展,现已成为分析实验室

原子发射光谱法原理

原子发射光谱法(AES),是利用原子或离子在一定条件下受激而发射的特征光谱来研究物质化学组成的分析方法。根据激发机理不同,原子发射光谱有3种类型:  ①原子的核外光学电子在受热能和电能激发而发射的光谱,通常所称的原子发射光谱法是指以电弧、电火花和电火焰(如ICP等)为激发光源来得到原子光谱的分析方法

实验室分析仪器原子发射光谱法的基本原理

1、 原子发射光谱的产生原子的外层电子由高能级向低能级跃迁,多余能量以电磁辐射的形式发射出去,这样就得到了发射光谱。原子发射光谱是线状光谱。通常情况下,原子处于基态,在激发光源作用下,原子获得足够的能量,外层电子由基态跃迁到较高的能量状态即激发态。处于激发态的原子是不稳定的,其寿命小于10-8s,外

实验室分析方法原子荧光光谱法发展历史

1964年,Winefordner等首先提出用原子荧光光谱(AFS) 作为分析方法的概念。1969年,Holak研究出氢化物气体分离技术并用于原子吸收光谱法测定砷。1974年,Tsujiu等将原子荧光光谱和氢化物气体分离技术相结合,提出了气体分离-非色散原子荧光光谱测定砷的方法,这种联合技术也是现代

实验室分析方法光谱法

光谱法是一种基于物质与辐射能作用时,分子发生能级跃迁而产生的发射、吸收或散射的波长或强度进行分析的方法。

原子发射光谱法是什么

原子发射光谱法(Atomic Emission Spectrometry,AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于1%

原子发射光谱法是什么?

原子发射光谱法:根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素进行定性和定量测定的分析方法。小结:原子发射光谱法与分子发射光谱法是“孪生兄弟”,其原理相似,均与激发态原子所辐射的特征谱线的波长和强度有关。光谱定性分析:不同元素的原子由不同的能级构成,因为能级差不一样,所以波长和频率也不

什么是原子发射光谱法

原子发射光谱法,是根据每种化学元素的原子或离子在热激发或电激发下,从激发态回到基态时发射的特征谱线,进行元素定性、半定量和定量分析的方法。它是光学分析中产生与发展最早的一种分析方法,却也是原子光谱技术研究中较为薄弱的一个部分。

原子发射光谱法的应用

原子吸收光谱是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析的方法.原子发射光谱是基于原子的发射现象,而原子吸收光谱则是基于原子的吸收现象.二者同属于光学分析方法.原子吸收法的选择性高,干扰较少且易于克服.由于原于的吸收线比发射线的数目少得多,这样谱线重叠的几率小得多.而且空心阴极灯一般

原子发射光谱法是什么

原子发射光谱法(Atomic Emission Spectrometry,AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于1%

原子发射光谱法的应用

原子发射光谱法,是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于1%以下含量的组份测定,检出限可达ppm,精密度为±10%左右,线性范围

原子发射光谱法和原子吸收光谱法的异同点

原子吸收光谱是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析的方法.原子发射光谱是基于原子的发射现象,而原子吸收光谱则是基于原子的吸收现象.二者同属于光学分析方法.原子吸收法的选择性高,干扰较少且易于克服.由于原于的吸收线比发射线的数目少得多,这样谱线重叠 的几率小得多.而且空心阴极灯一