实验分析方法有机质谱法发展简史
早期的质谱研究工作是与元素的同位素测定紧密相关的。同位素(isotope)这个词于1910年第一次使用,第一台质谱仪也是在这一年诞生的。实际上,早在1886年就有人提出了有关同位素的概念。用磁场偏转法分离带电粒子以测定其质量的研究工作也在1896年取得了成果,这些研究为后来的质谱学工作提供了一定的基础。1910年,英国剑桥大学卡文迪许(Cavendish)实验室的汤姆逊(Thomson)研制出了第一台现代意义上的质谱仪器,这是一台不能聚焦的抛物线质谱装置。汤姆逊用这台仪器首次发现了同位素的存在。他在分析氖元素时,发现了一个质荷比为22的峰。实验证明它既不是二氧化碳(CO2)的双电荷离子,也不是放射性衰变产物,而是氖元素的一个同位素。这台质谱仪的诞生,标志着科学研究的一个新领域质谱学(mass spectrometry)的开创。汤姆逊的第一台质谱仪,由于没有聚焦功能,分辨率较低。通过改进后,这台仪器能够将两个原子质量相差10%的离......阅读全文
实验分析方法有机质谱法发展简史
早期的质谱研究工作是与元素的同位素测定紧密相关的。同位素(isotope)这个词于1910年第一次使用,第一台质谱仪也是在这一年诞生的。实际上,早在1886年就有人提出了有关同位素的概念。用磁场偏转法分离带电粒子以测定其质量的研究工作也在1896年取得了成果,这些研究为后来的质谱学工作提供了一定的基
有机质谱法发展简史
有机质谱法发展简史1.早期早期的质谱研究工作是与元素的同位素测定紧密相关的。同位素(isotope)这个词于1910年第一次使用,第一台质谱仪也是在这一年诞生的。实际上,早在1886年就有人提出了有关同位素的概念。用磁场偏转法分离带电粒子以测定其质量的研究工作也在1896年取得了成果,这些研究为后来
实验室分析仪器有机元素分析仪的发展简史
早在19世纪上半叶,燃烧方法测试有机碳、氢、氮的组成就已经被提出来并且得到了迅速发展。基本原理为让有机物在氧气流中燃烧,碳、氢、氮分别被氧化为二氧化碳、水、二氧化氮和一氧化氮。然后用不同的吸附剂来吸附反应生成的不同气体。由各吸收剂增加的重量分别计算碳、氢和氮的含量。在方法发展的早期,燃烧反应和样品分
实验室分析方法有机质谱法用途和目的
有机质谱法organicmass spectrometry OMS对有机化合物进行定性定量分析的质谱方法。对于纯的有机化合物,可以直接将样品引入质谱仪器,测定化合物的分子量,并可根据得到的化合物相关碎片信息,推断化合物的可能结构。对于组分复杂的有机化合物,可通过联用仪器进行分析。如气相色谱、液相色谱
实验室分析方法质谱法的历史和发展
1898年W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素[kg1]Ne和[kg1]Ne阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用来测定同位素的相对丰度,鉴定
有机元素定量分析简史
简史 1831年J.von李比希建立了碳、氢的燃烧方法,将样品在氧气流中燃烧,并通过填充氧化铜的高温柱管,使碳、氢分别全部转化为二氧化碳和水,然后分别以氢氧化钾溶液和氯化钙吸收,由各吸收管增加的重量分别计算碳氢含量,是为有机元素定量分析工作之始。另一常见元素氮的分析方法是由J.-B.-A.杜马和J
血细胞分析的发展简史
1947年,在美国芝加哥那间小小的地下室里,华莱士库尔特先生和他的弟弟约瑟夫,正在利用细胞的生物特性和电学原理,为改进实验室检验工作寻求新的方法。 五十年来,库尔特兄弟发明的这项神奇的技术—库尔特原理,不仅开创了血细胞分析的自动化时代,也从此让库尔特公司的科学家们责无旁贷地肩负起了自动化血细胞
血细胞分析的发展简史
1947年,在美国芝加哥那间小小的地下室里,华莱士库尔特先生和他的弟弟约瑟夫,正在利用细胞的生物特性和电学原理,为改进实验室检验工作寻求新的方法。 五十年来,库尔特兄弟发明的这项神奇的技术—库尔特原理,不仅开创了血细胞分析的自动化时代,也从此让库尔特公司的科学家们责无旁贷地肩负起了自动化血细胞
血细胞分析的发展简史
1947年,在美国芝加哥那间小小的地下室里,华莱士库尔特先生和他的弟弟约瑟夫,正在利用细胞的生物特性和电学原理,为改进实验室检验工作寻求新的方法。 五十年来,库尔特兄弟发明的这项神奇的技术—库尔特原理,不仅开创了血细胞分析的自动化时代,也从此让库尔特公司的科学家们责无旁贷地肩负起了自动化血细胞
尿液分析仪发展简史
公元前400年, Hippocrates注意到发热时.尿液颜色和气味的变化。 18-19世纪-开始显微镜下尿液检查及尿液化学分析。 1827年,Bright,最早把尿液检验用于患者的诊断和护理。 1930-首先在滤纸上进行尿液斑点试验。 1956-美国Ames和Lilly公司几乎同时创建
尿液分析仪发展简史
公元前400年, Hippocrates注意到发热时.尿液颜色和气味的变化。 18-19世纪-开始显微镜下尿液检查及尿液化学分析。 1827年,Bright,最早把尿液检验用于患者的诊断和护理。 1930-首先在滤纸上进行尿液斑点试验。 1956-美国Ames和Lilly公司几乎同时创建
实验室分析方法无机质谱法
无机质谱分析法成为现代科学技术发展不可替代的分析工具是从测量元素存在开始,并伴随物质成分分析技术发展逐渐完善。20世纪50代后期,由于火花源质谱的发展,无机质谱法在微量、痕量元素分析领域几乎与原子吸收光谱、中子活化分析占有同样的地位。20世纪70~80年代,激光电离质谱法、四极杆电感耦合等离子体质谱
有机质谱法概念
有机质谱法概念将有机样品分子在离子源内离子化后,裂解成各种质荷比(m/z)的离子,进而在电场和磁场的作用下被分离,并被检测器测定,按质荷比的大小与强度排列而成的谱,称为有机质谱。利用有机质谱确定有机化合物的分子量、分子式及分子结构的方法,称为有机质谱法(organic mass spectromet
实验室分析方法质谱法的概念
质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核
实验室分析方法质谱法的定义
是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。
实验室分析方法质谱法的应用
质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片
实验室分析方法质谱法的原理
使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道
实验室分析方法激光解吸质谱法
激光解吸质谱法:采用激光解吸离子源的质潜法Af竹·为质谱离子源的电离方法有许多种,如常见的电子轰击源、化学电离、场解吸电离等。最早将激光引入离子源足1963年,当时是利用激光束作为质谱离子源:后经不断发展,于1963年始川激光解吸离子源。用激光照射喷涂在固体签底上的样品,激光所提供的能量使样品气化并
实验室分析方法质谱法质谱分类
电子轰击质谱EI-MS,场解吸附质谱FD-MS,快原子轰击质谱FAB-MS,基质辅助激光解吸附飞行时间质谱MALDI-TOFMS,电子喷雾质谱ESI-MS等等,不过能测大分子量的是基质辅助激光解吸附飞行时间质谱MALDI-TOFMS和电子喷雾质谱ESIMS,其中基质辅助激光解吸附飞行时间质谱MALD
实验室分析方法快原子轰击质谱法
快原子轰击质谱法(Fast-atom-bombardment Mass Spectrometry, FAB-MS)是用快原子轰击方式作为离子源的质谱分析法。
实验室分析方法同位素质谱法
质谱技术成为分析科学的重要组成部分是从同位素的发现开始的,并伴随同位素分析、研究和应用而发展。英国著名物理学家汤姆逊在1913年用简陋的抛物线装置发现惰性气体氖的两个稳定性同位素,标志着质谱技术的开始,而汤姆逊的抛物线装置被后人公认为是现代质谱仪的雏形。 汤姆逊的学生和助手阿斯顿(Aston),不但
SBR工艺发展“简史”!
SBR法即序批式活性污泥法。早在1914年,活性污泥法在产生之初就是采用间歇进水.排水的方式运行的,但由于其运行操作繁琐,当时又缺乏自动控制设备和技术,它很快被连续式活性污泥法所取代,并几乎被淘汰与遗忘。直到20世纪80年代以后,自动监测与控制的硬件设备与软件技术,特别是电子计算机的飞速发展,为SB
PCR仪发展简史
1983年春,Mullis发展出PCR的概念;1983年9月,Mullis用大肠杆菌DNA聚合酶做了第一个PCR实验,只用一个循环;1986年6月,Cetus公司纯化了第一种高温菌DNA聚合酶。1988年,美国Cetus公司推出了第一台PCR自动化热循环仪;1990年,Haase首创原位PCR反应;
分子诊断发展简史
沃森和克里克提出DNA双螺旋结构,“生命之谜”被打开,经过PCR技术、生物芯片技术、DNA测序技术之后分子诊断正在快速成为人类疾病诊断的最有效方式之一。分子诊断发展四阶段第一阶段:利用分子杂交技术进行遗传病基因诊断:通过婴儿胚胎期进行产前诊断,超早期预知某些疾病发生、发展和预后。1978年著名没计划
质谱发展简史
世界上第一台质谱仪于1912年由英国物理学家Joseph John Thomson 研制成功,但直到20 世纪80 年代,MALDI、ESI 等软电离技术的出现,使生物大分子转变成气相离子成为可能,并极大的提高了质谱测定范围,改善了测量的灵敏度,在一定程度上解决了溶剂分子干扰等问题,使质谱更适合用于
实验室分析仪器液质联用仪发展简史
1977年,LC-MS开始投放市场;1978年,LC-MS首次用于生物样品中的药物分析;1989年,LC-MS-MS取得成功1991年;API LC-Ms用于药物开发;1997年,LC-MS用于药物动力学筛选;1999年,API Q-TOFLC-MS-MS投放市场,大气压离子化接口的应用,彻底改变了
实验室分析方法快原子轰击质谱法方法介绍
由子快原子轰击是一种软电离技术,被分析样品无需经过气化而直接电离,所以,快原子轰击质谱法常用于分析 极性强、不易气化和热稳定性差的样品。FAB:是一种广泛应用的软电离技术。快原子轰击利用的重原子一般为 Xe 或 Ar。Ar+(高动能的) + Ar(热运动的) ——> Ar(高动能的) + Ar+(热
痕量分析方法质谱法介绍
利用射频火花离子源双聚焦质谱计测定高纯度材料中痕量杂质,其优点是:灵敏度高,测定下限达μg至ng级,一次可分析70多个元素。如有标样,可进行高纯金属和半导体定量分析、粉末样品或氧化物(制成电极后需镀导电高纯银膜)的分析;如无标样,采用加入内标元素的方法也可进行定量分析。若粉末样品或溶液样品的分析
升降平台的简史发展
升降平台随着人们对垂直运送的需求而出现,与人类的文明一样久远。原始的升降平台使用基本的动力方式如人力、畜力和水力来提升重量。在工业革命之前,这些动力方式一直被升降装置所广泛使用。 古希腊时,阿基米德开发了经过改进的用绳子和滑轮操作的升降装置,它用绞盘和杠杆把提升绳缠绕在绕线柱上。 公元80年
磁共振的发展简史
磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。1950年在室温附近观测到固体Cr2O3的反铁磁共振。19