实验室分析方法同位素质谱法
质谱技术成为分析科学的重要组成部分是从同位素的发现开始的,并伴随同位素分析、研究和应用而发展。英国著名物理学家汤姆逊在1913年用简陋的抛物线装置发现惰性气体氖的两个稳定性同位素,标志着质谱技术的开始,而汤姆逊的抛物线装置被后人公认为是现代质谱仪的雏形。 汤姆逊的学生和助手阿斯顿(Aston),不但改进了汤姆逊的抛物线装置,建造了第一台具有速度聚焦的质谱仪,研究、发现和测量了几十种元素的同位素质量和丰度,证明了氖同位素20Ne和2Ne的存在;而且成功解释了用化学法测量的氯原子量不为整数的原因。自此以后,随着质谱仪器性能改进和测量方法的进步,元素周期表中的大多数元素的核素质量、同位素丰度和原子量测量都是借助同位素质谱来完成的。由此不难看出同位素质谱技术在质谱学的诞生、发展历程中所扮演的重要角色。如上所述,早期同位素质谱法的主要工作集中于天然同位素的探索、发现和元素同位素丰度、原子质量和原子量的测量为原子质量、原子量标准值......阅读全文
实验室分析方法同位素质谱法
质谱技术成为分析科学的重要组成部分是从同位素的发现开始的,并伴随同位素分析、研究和应用而发展。英国著名物理学家汤姆逊在1913年用简陋的抛物线装置发现惰性气体氖的两个稳定性同位素,标志着质谱技术的开始,而汤姆逊的抛物线装置被后人公认为是现代质谱仪的雏形。 汤姆逊的学生和助手阿斯顿(Aston),不但
实验室分析方法无机质谱法
无机质谱分析法成为现代科学技术发展不可替代的分析工具是从测量元素存在开始,并伴随物质成分分析技术发展逐渐完善。20世纪50代后期,由于火花源质谱的发展,无机质谱法在微量、痕量元素分析领域几乎与原子吸收光谱、中子活化分析占有同样的地位。20世纪70~80年代,激光电离质谱法、四极杆电感耦合等离子体质谱
实验室分析方法质谱法的原理
使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道
实验室分析方法质谱法的定义
是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。
实验室分析方法质谱法的概念
质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核
实验室分析方法质谱法的应用
质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片
实验室分析方法激光解吸质谱法
激光解吸质谱法:采用激光解吸离子源的质潜法Af竹·为质谱离子源的电离方法有许多种,如常见的电子轰击源、化学电离、场解吸电离等。最早将激光引入离子源足1963年,当时是利用激光束作为质谱离子源:后经不断发展,于1963年始川激光解吸离子源。用激光照射喷涂在固体签底上的样品,激光所提供的能量使样品气化并
实验室分析方法快原子轰击质谱法
快原子轰击质谱法(Fast-atom-bombardment Mass Spectrometry, FAB-MS)是用快原子轰击方式作为离子源的质谱分析法。
实验室分析方法质谱法质谱分类
电子轰击质谱EI-MS,场解吸附质谱FD-MS,快原子轰击质谱FAB-MS,基质辅助激光解吸附飞行时间质谱MALDI-TOFMS,电子喷雾质谱ESI-MS等等,不过能测大分子量的是基质辅助激光解吸附飞行时间质谱MALDI-TOFMS和电子喷雾质谱ESIMS,其中基质辅助激光解吸附飞行时间质谱MALD
实验室分析方法质谱法的历史和发展
1898年W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素[kg1]Ne和[kg1]Ne阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用来测定同位素的相对丰度,鉴定
实验室分析方法快原子轰击质谱法方法介绍
由子快原子轰击是一种软电离技术,被分析样品无需经过气化而直接电离,所以,快原子轰击质谱法常用于分析 极性强、不易气化和热稳定性差的样品。FAB:是一种广泛应用的软电离技术。快原子轰击利用的重原子一般为 Xe 或 Ar。Ar+(高动能的) + Ar(热运动的) ——> Ar(高动能的) + Ar+(热
实验室分析方法氢氘交换质谱法的定义
一种研究蛋白质空间构象的技术。蛋白质等生物大分子中共价键结合的氢原子被介质中的氘原子取代,通过质谱测定蛋白质中不同氨基酸上的氢原子与介质中的氘原子的交换速率,研究蛋白质分子构象等。
实验室分析方法有机质谱法用途和目的
有机质谱法organicmass spectrometry OMS对有机化合物进行定性定量分析的质谱方法。对于纯的有机化合物,可以直接将样品引入质谱仪器,测定化合物的分子量,并可根据得到的化合物相关碎片信息,推断化合物的可能结构。对于组分复杂的有机化合物,可通过联用仪器进行分析。如气相色谱、液相色谱
质谱分析法术语同位素质谱法
同位素质谱法( (isotope mass spectrometry)用质谱仪器进行同位素组成的研究和原子质量测量的方法。主要用于核科学、同位素地质学、同位素地球化学和天体物质中同位素丰度的测定。随着同位素稀释法和稳定同位素标记技术的发展,同位素质谱法在生物学、临床医学、药学、农学和环境科学领域也得
同位素稀释电感耦合等离子体质谱法
同位素稀释冷电感耦合等离子体质谱(ID-CV-ICP-MS)方法,通过减少氯化锡汞气体引入已经开发和应用各种NIST标准参考材料中汞的定量和认证:SRM 966的有毒金属在牛血(30毫升- 1); SRM 1641d水中汞(1.6微克·毫升- 1)和1946年SRM苏必利尔湖的鱼纸巾(436纳克·G
热电离质谱法直接测定天然水体Sr同位素比值
Sr同位素是环境科学、水文地球化学研究重要的示踪剂,通过测定不同水体储库中的Sr同位素比值(87Sr/86Sr),有助于认识区域水文地球化学、流域盆地岩石风化速率、地下水的水岩作用等重要地球化学过程,因此Sr同位素在上述研究领域具有广泛的应用前景。热电离质谱仪(TIMS)是进行Sr同位素分析最准
质谱法的方法应用
质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片
质谱分析法术语离气体稳定同位素质谱法
气体稳定同位素质谱法( gas stable isotope ratio mass spectrometry, GSIRMS)该法因测量气体稳定同位素比值而得名,如测量碳、氧、氮、硫等元素的稳定性同位素,测量结果的品位通常以δ表示,在同位素地球化学、同位素地质学、石油勘探与开采、同位素宇宙学、海洋学
痕量分析方法质谱法介绍
利用射频火花离子源双聚焦质谱计测定高纯度材料中痕量杂质,其优点是:灵敏度高,测定下限达μg至ng级,一次可分析70多个元素。如有标样,可进行高纯金属和半导体定量分析、粉末样品或氧化物(制成电极后需镀导电高纯银膜)的分析;如无标样,采用加入内标元素的方法也可进行定量分析。若粉末样品或溶液样品的分析
质谱法
质谱法具有如下特点:(1)灵敏度高,通常一次分析仅需几微克的样品。(2)响应时间短,分析速度快。(3)信息量大,能得到大量的结构信息和样品分子的相对分子质量。(4)可测定分子式。 一、质谱法的基本原理 理解并掌握质谱法的基本原理。 二、质谱的表示方法 最强的离子峰为基峰。 三、质谱仪
一液相稳定同位素比值质谱法葡萄酒行业标准征求意见
关于对《葡萄酒中甘油稳定碳同位素比值(13C/12C)测定方法 稳定同位素比值质谱法》行业标准征求意见的通知 各有关单位、专家: 根据《关于印发2013年第四批行业标准制修订计划的通知》(工信厅科[2013]217号),《葡萄酒中甘油稳定碳同位素比值13C/12C测定方法》(计划编号:20
凝胶色谱净化液相同位素稀释质谱法测定肉中的甲奈威
摘要:采用液相色谱-串联质谱检测技术结合同位素稀释定量方法,建立了肉中甲奈威残留量测定方法。样品经丙酮和石油醚提取,凝胶色谱(GPC)净化,经HSS T3色谱柱(100 mm x 2.1mm,1.7μm)分离,以0.1%甲酸溶液-乙腈(6/4,体积比)为流动相,0.3 mL/min等度洗脱,采用电喷
化学方法分析高纯金属纯度质谱法
电感耦合高频等离子体质谱法( ICP-MS) ICP -MS技术是20世纪80年代发展成熟起来的一种痕量、超痕量多元素同时分析技术。ICP-MS 综合了等离子体极高的离子化能力和质谱的高分辨、高灵敏度及连续测定多元素的优点, 检出限低至(0.001~0.1) ng/ml ,测定的线性范围宽达
实验分析方法有机质谱法发展简史
早期的质谱研究工作是与元素的同位素测定紧密相关的。同位素(isotope)这个词于1910年第一次使用,第一台质谱仪也是在这一年诞生的。实际上,早在1886年就有人提出了有关同位素的概念。用磁场偏转法分离带电粒子以测定其质量的研究工作也在1896年取得了成果,这些研究为后来的质谱学工作提供了一定的基
质谱法的的方法特点及应用目的
质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核
质谱法概述
质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实
质谱法简介
质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由
质谱法概述
质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实
质谱法进行高通量蛋白鉴定的主要方法
蛋白质组(Proteome)指由一个基因组或一个细胞、组织表达的所有蛋白质。蛋白质全谱分析目的在于鉴定样本中尽可能多的肽和蛋白质混合物的组分。基于质谱技术的全谱鉴定,可为蛋白高通量的定量和修饰分析提供参考信息。传统的方法如蛋白质微量测序、氨基酸组成分析(如Edman降解法)费时费力、通量低,存在不容
质谱分析法术语二次离子质谱法
二次离子质谱法( secondary ion mass spectrometry, SIMS)采用二次离子质谱仪进行质析的方法,该法依赖于所用不同二次离子质譜仪,可划分为四极杆二次离子质(quasSenary ion nmss spectrometr)、高分辩二次离子质谱仪( high resolu