Antpedia LOGO WIKI资讯

实验室分析仪器质谱仪器介绍

汤姆逊的学生阿斯顿(Aston)出色地继承了汤姆逊所开创的质谱学成就,设计、制造了一台分辨率达到130的磁分析器。阿斯顿利用这台及其后来改进型的质谱仪进行了一系列开创性工作。他确认了汤姆逊发现的氖两个稳定同位素20Ne和22Ne的存在。同时,通过测量氯的两种同位素丰度,计算氯的原子量,成功地解释了当时用化学法测量的氯原子量不靠近整数的原因。此后,他又测量了数十种元素同位素的自然丰度。由于用质谱法测量同位素丰度的杰出贡献,阿斯顿率先用质谱分析方法敲开了诺贝尔化学奖大门,荣获了1922年诺贝尔化学奖。几乎在同一时期,加拿大人德姆颇斯特(Dempster)也在进行着类似的研究,与汤姆逊的工作不同的是,他所建立的质谱仪器使用半圆形的均匀磁场,具有方向聚焦性质,分辨率达到100。 Dempster利用他所建立的仪器开展了与汤姆逊类似的开创性研究,发现并测量了一些元素的同位素丰度。 这时的质谱仪局限于单聚焦质量分析器,对方向聚焦发......阅读全文

实验室分析仪器--质谱仪器介绍

汤姆逊的学生阿斯顿(Aston)出色地继承了汤姆逊所开创的质谱学成就,设计、制造了一台分辨率达到130的磁分析器。阿斯顿利用这台及其后来改进型的质谱仪进行了一系列开创性工作。他确认了汤姆逊发现的氖两个稳定同位素20Ne和22Ne的存在。同时,通过测量氯的两种同位素丰度,计算氯的原子量,成功地解释了当

实验室分析仪器--主要的质谱仪器介绍

自1912年第一台质谱仪问世后,经历了一百多年,质谱技术获得长足的发展,目前已成为分析化学不可缺少的工具。质谱法所特有的优点是:超微量(样品取量为微克级);快速(数分钟之内完成一次测试);能同时提供有机样品的精确分子量、元素组成和碳骨架及官能团结构信息;既能进行定性分析又能进行定量分析;能最有效地与

实验室分析仪器--飞行时间质谱仪的介绍

飞行时间质谱仪结构示意图如下,在检测器前设置了一个电位选择器网栅,与离子源控制栅极同步运行,使所选择质量的离子进入检测器。与入射离子成直角,配制滞阻电极的飞行时间质量分析器分辨率更高,并可消除中性离子和散射离子的影响。 

实验室分析仪器--质谱仪器扫描质谱数据的处理介绍

对于逐点扫描得到的一段质谱数据,数据处理的首要任务是峰位置的判别。其实质是峰数据与既有模型的匹配过程,这与质谱仪的特性、扫描参数以及数据的统计信息等多种因素有关系。简单情况下,连续几个数据都大于设定的阈值(如最大值5%)即可认为该段数据是峰数据,而剩余的数据可认为是本底。在峰位置判别的基础上,根据本

实验室分析仪器--有机质谱仪生物样品的制备方法介绍

生物样品通常是指植物的根、茎、叶、花、种子等动物(包括人)的呼吸气体、体液(如尿、血、唾液、淋巴液、胆汁、胃液及生物体内的其他分泌液等)、毛发、肌肉和组织器官(如胸腺、胰腺、肝、肺、脑、胃、肾等)和器官内异常物(如结石、肿瘤等)以及各种微生物。常见的待分析检测组分包括植物体内的营养成分及有害成分如农

实验分析仪器--质谱仪仪器的工作状态介绍

1、仪器的清净仪器的清净对分辨率有影响。由于样品在离子化审内离化和离子在分析室系统中运动都会引起对仪器的玷污,其结果是形成绝缘层和表面电荷的积累,由此形成附加电场或存使原来电场的电力线变形而改变离子运动的电参数,造选成分辨下降并影响测定的准确性。 2、仪器的真空通常分析室是在高真空条件下运转,真空的

实验室分析仪器--扇形磁场质谱仪

一个质量为m,电荷价态为z的离子经加速电压V加速后,获得动能zeV并以速度v运动。忽略加速前的热运动,则1/2 mv2=zeV 其中,e是一个电子的电荷。将该离子垂直射入扇形磁场中,在洛伦兹力作用下作圆周运动,如图所示,所受到的向心力与离心力平衡。 离子在扇形磁场中的运动所以,B zeV= mv2

实验室分析仪器--有机质谱仪质谱仪器的真空要求

质谱仪器必须在良好的真空条件下才能正常操作,一般要求质量分析器的真空优于pa。质谱仪器所检测的离子必须要有较大的自由程才可以到达检测器,其他气体成分也可能与离子发生反应影响检测,在质谱仪中工作的部件(如离子源灯丝、较密排布的高压极板)需要在高真空下才能稳定工作。因此,质谱仪中的部件需要一个真空环境进

实验室分析仪器--质谱仪器的组成-电子倍增器

电子倍增器20世纪80年代早期首次研发出ICP-MS后,科学家设计使用了多种不同的离子检测系统,其中以用于低计数率的电子倍增器及高计数率的法拉第杯应用最为广泛。电子倍增器使用多个独立的打拿极将光子转换为电子。

实验分析仪器--质谱仪的基本结构及功能介绍

质谱仪一般由进样系统、电离源、质量分析器、真空系统和检测系统构成一、进样系统在液质联用中一般有两种进样方式。第一种是输注,即用注射器泵(syringe pump)将样品溶液直接缓慢输入到离子源。这种方法虽然简便、快速,但是需要相对多的样品,且难以实现自动进样分析。第二种是流动注射,即将样品溶液注入H