实验室分析仪器气相色谱仪的原理、结构及操作方法
1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录......阅读全文
实验室分析仪器气相色谱仪的原理、结构及操作方法
1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽
气相色谱仪原理、结构及操作
1气相色谱仪原理、结构及操作1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现
气相色谱仪原理、结构及操作
1气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及
实验室分析方法气相色谱制备气相色谱仪结构及原理
目前,色谱技术已在复杂混合物分离分析方面应用十分广泛,但在色谱技术发展初期其主要用于样本的制备,但受气相色谱本身技术特点的限制,制备气相色谱的应用范围不如制备液相色谱广泛,但其仍在挥发性组分的分离、制备方面发挥了重要作用。制备气相色谱仪与分析气相色谱仪在处理样品时都需要先分离样品,两种方法的主要差别
气相色谱仪的结构组成及工作原理
储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电
实验室分析仪器气相色谱仪气相色谱的分离原理
气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。
实验室分析方法过程气相色谱仪结构及原理
过程气相色谱是一种用于化学工业在线分离和测量混合物中不同组分的分析技术,常用于工业过程的在线监测、自动循环分析等,又被称为流程气相色谱仪或在线气相色谱仪。从气相色谱技术诞生的20世纪50年代,气相色谱系统就已从实验室进入到工厂生产过程的控制,包括对原料、中间产物及产品的组成、质量和收率进行分析,关键
实验室分析仪器气相色谱仪原理
气相色谱仪是实验室一种常用的分析气体的仪器,它的应用领域有很多,如石油,化工,医疗,环境,卫生等等。既然气相色谱仪用途这么大,你们对它的基本操作原理和构成是否全面了解呢?下面为大家介绍一下气相色谱仪的一些基础知识。色谱法又叫层分析法,它是一种物理分离技术。阿德分离原理是使混合物中的各组分在两相间进行
气相色谱仪的原理和结构
气相色谱仪的原理 气相色谱仪是利用色谱分离技术和检测技术,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不超过500℃的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。 对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混
实验室分析仪器气相色谱仪工作原理
利用试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配。由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器
实验室分析仪器气相色谱仪的分析原理
俄国植物学家Tswet(茨维特)于1903年发现“色谱”,Martin和Synge在1940年提出液一液分配色谱法(Liquid-Liquid Partition Chromatography),并在1941年提出用气体代替液体作流动相的可能性,11年之后James和Martin发表了从理论到实践比
实验室分析仪器气相色谱仪的工作原理
利用试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配。由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器
实验室分析仪器气相色谱仪热导池的结构和工作原理
热导池由池体和热敏元件构成,可分双臂和四臂热导池两种。由于四臂热导池热丝的阻值比双臂热导池增加一倍,故灵敏度也提高一倍。目前仪器中都采用四根金属丝组成的四臂热导地。其中二臂为参比臂,另二臂为测量臂,将参比臂和测量臂接人惠斯电桥,由恒定的电流加热组成热导地测量线路。
实验室分析方法气相色谱裂解气相色谱仪结构及原理
裂解气相色谱法是通过热能将高分子及难挥发有机化合物瞬间热裂解成易挥发的小分子,再经载气带入气相色谱系统对裂解产物进行分离和检测,通过分析热裂解产物的色谱信息,来确定或推测原始样品的组成或结构。热裂解技术与气相色谱和/或质谱联用(py-gc/ms)已成为非挥发性、复杂异质样品表征的有力手段。裂解气相色
气相色谱仪简介及结构
气相色谱仪是指将分析样品在进样口中气化后,由载气带入色谱柱,通过对欲检测混合物中组分有不同保留性能的色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号的仪器。气相色谱仪的基本构造有两部分,即分析单元和显示单元。气相色谱仪可以应用于石油加工、生物化学、医药卫生等方面。色谱柱,使各组分分离,依
实验室分析仪器气相色谱仪气源准备及净化
(1)气源准备。事先准备好需用的高压气体钢瓶,当钢瓶气压下降到1~2MPa时,应更换钢瓶。(2)气源净化。在气体进入仪器之前应经过严格净化处理,以除去各种气体可能含有的水分、灰分和有机气体成分。有的色谱仪附有净化器,内填有5A分子筛、活性炭、硅胶等,如果全部用气体钢瓶,可基本满足要求若使用一般氢气发
气相色谱仪原理及操作
1、基本原理气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化
气相色谱仪简介及原理
气相色谱仪是指将分析样品在进样口中气化后,由载气带入色谱柱,通过对欲检测混合物中组分有不同保留性能的色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号的仪器。气相色谱仪的基本构造有两部分,即分析单元和显示单元。气相色谱仪可以应用于石油加工、生物化学、医药卫生等方面。色谱柱,使各组分分离,
气相色谱仪的原理及操作
气相色谱仪的基本构造有两部分,即分析单元和显示单元。前者主要包括起源及控制计量装 置﹑进样装置﹑恒温器和色谱柱。后者主要包括检定器和自动记录仪。色谱柱(包括固定相)和检定器是气相色谱仪的核心部件。操作1)操作要点1. 参照所属仪器的说明书摆放好仪器,将有关插头对号入座,接地线要牢固接地。 2. 将
实验室分析仪器气相色谱仪基本结构和功能介绍
1、气相色谱仪的基本结构色谱分析的关键是实现分离分析系统的一体化。经色谱柱分离的组分,由合适的检测器进行检测,产生的电信号由记录仪或工作站记录而得出色谱图,这一色谱图由一连串的峰组成,每一峰表示流出的一个组分,并且其数目等于组分的数目。流出的时间可以用来衡量混合物的组分,通常用某组分的流出时间或保留
气相色谱仪结构
气相由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。1.柱箱:色谱柱是气相色谱仪的心脏,样品中的各个组份在色谱柱中经过反复多次分配后得到分离从而达到分析的目的,柱箱的作用就是安装色谱柱。由于色谱柱的两端分别连接进样器和检测器,因此,进样器和
气相色谱仪结构
气相色谱仪由分析单元和显示单元两部分构成,其中,分析单元主要包括气源及控制计量装置﹑进样装置﹑恒温器和色谱柱,显示单元主要包括检定器和自动记录仪。在其众多的组成部件中,气相色谱仪功能得以实现的关键部件是色谱柱和检定器。气相色谱仪将待测样品在进样口中气化后,便由载气带入色谱柱,在色谱柱中各组成成分进行
实验室气相色谱仪的工作原理
气相色谱仪利用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。色谱柱的 直径为数毫米,其中填充有固体吸附剂或液体溶剂,所填充的吸附剂或溶剂称为固定相。与固定相相对应的还有一个流动相。流动相是一种与样品和固定相都不发生反应的气体,一般为氮或氢气。色谱仪待分析的样品在色谱柱顶端注入流动相,
气相色谱仪的结构
(1)载气系统 包括气源、气体净化、气体流速控制和测量。 气相色谱的气源按照用途可以分为四类:载气、燃气、助燃气、驱动气。 ①载气:个分析系统,要求纯度高、质量好,一般来说常用的载气有:氮气、氢气、氩气、氦气等。 ②燃气:一般用氢气,只要保证可以正常点火,并且不干扰分析就可以了。可以使用
实验室分析方法气相色谱毛细管柱气相色谱仪结构、原理
毛细管气相色谱法是采用毛细管柱进行高效分析的色谱方法。采用的毛细管柱为内径较细的开管柱。与填充柱相比,毛细管柱具有分离效能高、分析速度快和样本用量少的特点常用的毛细管柱一般柱长在15~60m,内径为0.1~0.53mm,柱流量为0.5~2mL/min,进样量为10ng~1ug。为了充分利用毛细管柱的
气相色谱仪工作原理及应用
1、色谱分离基本原理: 在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动
实验室分析仪器气相色谱仪基础载气
载气:carrer gas 用作流动相的气体。
气相色谱仪的简介及工作原理
气相色谱仪在石油、化工、生物化学、医药卫生、食品工业、环保等方面应用很广。它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和瑞盛比表面积等物理化学常数。一种对混合气体中各组成分进行分析检测的仪器。 气相色谱仪,将分析样品在进样口中气化后,由载气带入色谱柱,通过对欲检测混合
实验室分析仪器气相色谱仪的发展历史及趋势
一、前言 自1952年世界上第一次创建实用气液色谱法以来,在短短几十年间,气相色谱仪作为现代分析检测仪器的代表,已发展成为一个有相当生产规模的产业,并形成了具有相当丰富的检测技术知识的学料。通过研究气相色谱仪的发展规律,能给使用者有益的启迪,为有关专业人员的工作带来一定的帮助。现以在中国得到广泛应用
实验室分析仪器气相色谱仪基础流动相
流动相:mobile phase 在色谱柱中用以携带试样和洗脱组分的气体。